
Calculus Study Guide 12 Spring 2022

Functions of Several Variables

Definition Let D be a subset of R2, and let f : D → R be a function defined on D. Then the
graph of f on D is a subset in R3 defined by

S = {(x, y, z) ∈ R3 | z = f(x, y) and (x, y) ∈ D} ⊂ R3.

Examples

� If (a, b) ̸= (0, 0), the graph of the linear function f(x, y) = ax + by + c on R2 is a plane in
R3 given by

S = {(x, y, z) ∈ R3 | z = ax+ by + c and (x, y) ∈ R2}.

� The graph of g(x, y) =
√

9− x2 − y2 on the closed disk x2+y2 ≤ 9 is the upper hemisphere
with center (0, 0, 0) and radius 3 given by

S = {(x, y, z) ∈ R3 | z =
√

9− x2 − y2 ≥ 0 and x2 + y2 ≤ 9}

Definition Let D be a subset of R2, and let f : D → R be a function defined on D. Then a level
curve of f at the level k is a subset of D given by

Lf (k) = {(x, y) ∈ D | f(x, y) = k} ⊆ D.

A collection of level curves is called a contour map of f .

Example Let f(x, y) =
−3y

x2 + y2 + 1
for (x, y) ∈ R2. The following sketches show the level curves

and the graph near the origin.
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Remark In general, if D is a subset of Rn, f : D → R is a function defined on D. Then the
graph of f on D is a subset in Rn+1 defined by

S = {(x1, . . . , xn+1) ∈ Rn+1 | xn+1 = f(x1, . . . , xn) and (x1, . . . , xn) ∈ D} ⊂ Rn+1.

and a level set (or level curve, surface when n = 2, 3 respectively) of f at the level k is a subset
of D given by

Lf (k) = {(x1, . . . , xn) ∈ D | f(x1, . . . , xn) = k} ⊆ D.

Limits and Continuity

Let p ∈ Rn, r > 0 and let Br(p) denote the ball of center p and radius r defined by

Br(p) = {x ∈ Rn | |x− p|2 =
n∑

i=1

(xi − pi)
2 < r2},

where |x− p| is the Euclidean distance from x to p.

Definitions Let D be a subset of Rn and p ∈ D. Then

� p is called an interior point of D if there exists an r > 0 such that

Br(p) = {x ∈ Rn | |x− p| < r} ⊂ D ⇐⇒ if x ∈ Br(p) then x ∈ D.

� p is called a boundary point of D if it is not an interior point of D.

� D is called an open subset of Rn if every point in D is an interior point of D.

Remark If p is a point in D, then p is either an interior point or a boundary point of D.

Example Let D = [0, 1] ∪ {2} ⊂ R. Then (0, 1) is the set of interior points of D while {0, 1, 2}
is the set of boundary points of D.

Definition Let f be a function of two variables whose domain D includes points arbitrarily close
to (a, b). Then

lim
(x,y)→(a,b)

f(x, y) = L ∈ R
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if for every ε > 0 there is a corresponding δ > 0 such that

if 0 <|(x, y)− (a, b)|< δ then (x, y) ∈ D and |f(x, y)− L| < ε

⇐⇒ if (x, y) ∈ Bδ((a, b)) \ {(a, b)} then (x, y) ∈ D and |f(x, y)− L| < ε

Note that if lim
(x,y)→(a,b)

f(x, y) exists, then it is unique.

Algebraic Properties of Limits Let f, g be functions of two variables whose domain D
includes points arbitrarily close to (a, b). If

lim
(x,y)→(a,b)

f(x, y) = L ∈ R and lim
(x,y)→(a,b)

g(x, y) = M ∈ R,

then

� (Sum and Difference Law) lim
(x,y)→(a,b)

[f ± g](x, y) = L±M

� (Product Law) lim
(x,y)→(a,b)

[f × g](x, y) = L×M

� (Quotient Law) lim
(x,y)→(a,b)

f(x, y)

g(x, y)
=

L

M
provided that g(x, y) ̸= 0 for (x, y) close to (a, b)

and the limit of the denominator is not 0.

Proposition (Squeeze Theorem) Let f, ℓ, r : D → R be functions of two variables whose
domain D includes points arbitrarily close to (a, b). Suppose that

ℓ(x, y) ≤ f(x, y) ≤ r(x, y) for all (x, y) ∈ D \ {(a, b)},

and
lim

(x,y)→(a,b)
ℓ(x, y) = L = lim

(x,y)→(a,b)
r(x, y).

Then lim
(x,y)→(a,b)

f(x, y) = L.

Definition Let D be a subset of R2, f : D → R be a function defined on D and let (a, b) be an
interior point of D. Then f is said to be continuous at (a, b) if

lim
(x,y)→(a,b)

f(x, y) = f(a, b),

i.e. for every ε > 0 there is a corresponding δ > 0 such that

if |(x, y)− (a, b)|< δ then (x, y) ∈ D and |f(x, y)− f(a, b)| < ε

⇐⇒ if (x, y) ∈ Bδ((a, b)) then (x, y) ∈ D and |f(x, y)− f(a, b)| < ε

We say that f is continuous on D if f is continuous at every point (a, b) in D.

Algebraic Properties of Continuous Functions Let f and g be functions of two variables
whose domain D includes points arbitrarily close to (a, b). If f and g are continuous at (a, b), i.e.

lim
(x,y)→(a,b)

f(x, y) = f(a, b) and lim
(x,y)→(a,b)

g(x, y) = g(a, b),

then so is the

� (Sum and Difference) f ± g since lim
(x,y)→(a,b)

[f ± g](x, y) = f(a, b)± g(a, b).
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� (Product) f × g since lim
(x,y)→(a,b)

[f × g](x, y) = f(a, b)× g(a, b).

� (Quotient)
f

g
provided that g(a, b) ̸= 0 since lim

(x,y)→(a,b)

f(x, y)

g(x, y)
=

f(a, b)

g(a, b)
.

Examples

1. Show that lim
(x,y)→(0,0)

sin(x2 + y2)

x2 + y2
= 1.

2. Show that lim
(x,y)→(0,0)

x2 − y2

x2 + y2
does not exist.

3. Evaluate lim
(x,y)→(1,2)

(x2y3 − x3y2 + 3x+ 2y).

4. Where is the function f(x, y) =
x2 − y2

x2 + y2
continuous?

Remark In general, if D is a subset of Rn and f : D → R is a real-valued function defined on
D includes points arbitrarily close to p, then we say that lim

x→p
f(x) = L if for every number ε > 0

there is a corresponding number δ > 0 such that

if 0 < |x− p| < δ then x ∈ D and |f(x)− L| < ε,

⇐⇒ if x ∈ Bδ(p) \ {p} then x ∈ D and |f(x)− L| < ε.

If p ∈ D, then we say that f is continuous at p if lim
x→p

f(x) = f(p), i.e. if for every ε > 0 there is

a corresponding δ > 0 such that

if |x− p| < δ then x ∈ D and |f(x)− f(p)| < ε

⇐⇒ if x ∈ Bδ(p) then x ∈ D and |f(x)− f(p)| < ε

Definition Let D be a subset of R2, p = (a, b) be an interior point of D and let f : D → R be
a real-valued function defined on D. Then the partial derivative of f with respect to x at (a, b),

denoted by fx(a, b) or
∂f

∂x
(a, b), is defined to be

fx(a, b) = lim
h→0

f(a+ h, b)− f(a, b)

h
provided that the limit exists,

and the partial derivative of f with respect to y at (a, b), denoted by fy(a, b) or
∂f

∂y
(a, b), is

defined to be

fy(a, b) = lim
h→0

f(a, b+ h)− f(a, b)

h
provided that the limit exists.

Remark Recall that if f : R → R is differentiable at x = a, then lim
x→a

f(x)− f(a)

x− a
exists and f

is continuous at x = a since

lim
x→a

[f(x)−f(a)] = lim
x→a

[
f(x)− f(a)

x− a
· (x− a)

]
= lim

x→a

f(x)− f(a)

x− a
·lim
x→a

(x−a) = 0 =⇒ lim
x→a

f(x) = f(a).
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However, the existence of partial derivatives for a function of several variables do not always
guarantee the continuity of the function.

Example Let f : R2 → R be a function of two variables defined by

f(x, y) =


2xy

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

1. Show that f is not continuous at (0, 0).

2. Find fx(0, 0) and fy(0, 0).

Remark Let D be an open subset of R2 and let f : D → R be a real-valued function defined on
D. Suppose that the partial derivatives fx and fy exist at every point in D, then the functions
fx, fy : D → R are defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
differentiate f with respect to x by treating y as a constant,

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
differentiate f with respect to y by treating x as a constant.

Examples

1. If f(x, y) = x3 + x2y3 − 2y2, find fx(2, 1) and fy(2, 1).

2. If f(x, y) = 4− x2 − 2y2, find fx(1, 1) and fy(1, 1) and interpret these numbers as slopes.

3. If f(x, y, z) = exy lnz, find fx, fy, and fz.

4. If f(x, y) = x3 + x2y3 − 2y2, find the second partial derivatives fxx = (fx)x, fxy = (fx)y,
fyx = (fy)x, and fyy = (fy)y.

Clairaut’s Theorem Suppose f is defined on a disk D that contains the point (a, b). If the
functions fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b).
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Examples

1. Let f : R2 → R be a function of two variables defined by

f(x, y) =


xy(x2 − y2)

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Show that

fx(x, y) =


x4y + 4x2y3 − y5

(x2 + y2)2
if (x, y) ̸= (0, 0) by direct differentiation,

0 if (x, y) = (0, 0) by definition of partial derivative,

fy(x, y) =


−y4x− 4y2x3 + x5

(y2 + x2)2
if (x, y) ̸= (0, 0) by direct differentiation,

0 if (x, y) = (0, 0) by definition of partial derivative,

and that fxy(0, 0) = −1 ̸= 1 = fyx(0, 0) by definition of partial derivatives.

2. Show that the function u(x, y) = ex sin y is a solution of the Laplace equation, that is
∆u = uxx + uyy = 0.

Definition Let D ⊂ R2, (a, b) be an interior point of D and let f : D → R be a function defined
on D. Then f is called differentiable at (a, b) if there exists (ℓ1, ℓ2) ∈ R2 such that

lim
(x,y)→(a,b)

|f(x, y)− f(a, b)− ℓ1(x− a)− ℓ2(y − b)|
|(x, y)− (a, b)|

= 0.

⇐⇒ lim
(x,y)→(a,b)

|ε(x, y)|√
(x− a)2 + (y − b)2

= 0, where ε(x, y) = f(x, y)− f(a, b)− ℓ1(x− a)− ℓ2(y − b)

Theorem If f is differentiable at (a, b), then the partial derivatives fx and fy exist at (a, b) and
(ℓ1, ℓ2) = (fx(a, b), fy(a, b)).

Proof Since

0 = lim
(x,b)→(a,b)

|f(x, b)− f(a, b)− ℓ1(x− a)− ℓ2(b− b)|
|(x, b)− (a, b)|

= lim
x→a

|f(x, b)− f(a, b)− ℓ1(x− a)|
|x− a|

=⇒ 0 = lim
x→a

f(x, b)− f(a, b)− ℓ1(x− a)

x− a
= lim

x→a

f(x, b)− f(a, b)

x− a
− ℓ1 = fx(a, b)− ℓ1,

and

0 = lim
(a,y)→(a,b)

|f(a, y)− f(a, b)− ℓ1(a− a)− ℓ2(y − b)|
|(a, y)− (a, b)|

= lim
y→b

|f(a, y)− f(a, b)− ℓ2(y − b)|
|y − b|

=⇒ 0 = lim
y→b

f(a, y)− f(a, b)− ℓ2(y − b)

y − b
= lim

y→b

f(a, y)− f(a, b)

y − b
− ℓ2 = fy(a, b)− ℓ2.

Theorem If the partial derivatives fx and fy exist near (a, b) and are continuous at (a, b), then
f is differentiable at (a, b), that is,

lim
(x,y)→(a,b)

|f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b)|
|(x, y)− (a, b)|

= 0.
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Proof For each ε > 0, since fx and fy exist near (a, b) and are continuous at p = (a, b), there
exists a δ > 0 such that if (x, y) ∈ Bδ(p), then

|fx(x, y)− fx(a, b)|+ |fy(x, y)− fy(a, b)| < ε.

Let g : Bδ(p) → R be defined by

g(x, y) = f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b) for (x, y) ∈ Bδ(p).

Then g(a, b) = 0,

gx(x, y) = fx(x, y)− fx(a, b) and gy(x, y) = fx(x, y)− fy(a, b).

Let the line segment in Bδ(p) from (x, y) to p = (a, b) be given by

r(t) = (a, b) + t(x− a, y − b), t ∈ [0, 1],

and consider the function

g(r(t)) = g(x(t), y(t)) = g(a+ t(x− a), b+ t(y − b)) for t ∈ [0, 1].

By the Mean Value Theorem, there is a 0 < t0 < 1 with r(t0) = (x0, y0), such that

|g(r(1))− g(r(0))| = | d
dt
g(r(t))|t=t0(1− 0)| = | d

dt
g(x(t), y(t))|t=t0|

= |gx(x0, y0)x
′(t0) + gy(x0, y0)y

′(t0)|
= |[fx(x0, y0)− fx(a, b)](x− a) + [fy(x0, y0)− fy(a, b)](y − b)|
≤ (|fx(x0, y0)− fx(a, b)|+ |fy(x0, y0)− fy(a, b)|)

√
(x− a)2 + (y − b)2

< ε
√
(x− a)2 + (y − b)2 = ε|(x, y)− (a, b)|

Since

g(r(1)) = g(x, y) = f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b), g(r(0)) = g(a, b) = 0,

we have

|f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b)| = |g(r(1))− g(r(0))| < ε|(x, y)− (a, b)|,

which implies that

|f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b)|
|(x, y)− (a, b)|

< ε.

Since ε > 0 is an arbitrary positive number, we have

lim
(x,y)→(a,b)

|f(x, y)− f(a, b)− fx(a, b)(x− a)− fy(a, b)(y − b)|
|(x, y)− (a, b)|

= 0

and f is differentiable at (a, b).
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Equation of a Tangent Plane Let D ⊂ R2 and f : D → R be a function with continuous
partial derivatives. Then the plane tangent to the surface

S = {(x, y, z) ∈ R3 | z = f(x, y) and (x, y) ∈ D},

at the point P (x0, y0, z0) ∈ S has an equation

z − z0 = fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0).

Proof Let C1 and C2 be the curves obtained by intersecting the vertical planes y = y0 and x = x0

with the surface S. Then the point P lies on both C1 and C2. Let T1 and T2 be the tangent lines
to the curves C1 and C2 at the point P.

Then the plane tangent to the surface S at the point P is defined to be the plane that contains
both tangent lines T1 and T2.

Since C1 = S ∩ {(x, y0, z) | (x, z) ∈ R2} and C2 = S ∩ {(x0, y, z) | (y, z) ∈ R2} are curves in S,
we may parametrize C1 and C2 by vector function

C1 : r1(x) = (x, y0, z)
C1⊂S
= (x, y0, f(x, y0)) for (x, y0) ∈ D =⇒ r′1(x0) = (1, 0, fx(x0, y0)) // T1

C2 : r2(y) = (x0, y, z)
C2⊂S
= (x0, y, f(x0, y)) for (x0, y) ∈ D =⇒ r′2(y0) = (0, 1, fy(x0, y0)) // T2

This implies that the tangent plane to the surface S at the point P is perpendicular the vector

(1, 0, fx(x0, y0))× (0, 1, fy(x0, y0)) = (−fx(x0, y0),−fy(x0, y0), 1),

and has an equation

(x− x0, y − y0, z − z0) · (−fx(x0, y0),−fy(x0, y0), 1)⟩ = 0 since cos
π

2
= 0

⇐⇒ −fx(x0, y0) (x− x0)− fy(x0, y0) (y − y0) + (z − z0) = 0

⇐⇒ z − z0 = fx(x0, y0) (x− x0) + fy(x0, y0) (y − y0).

Example Find an equation for the plane tangent to the elliptic paraboloid z = 2x2 + y2 at the
point (1, 1, 3).

Definition Let D ⊂ R2, (a, b) be an interior point of D and let f : D → R be a function with
continuous partial derivatives. The linear function L : R2 → R defined by

L(x, y) = f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b) for all (x, y) ∈ R2
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is called the linearization of f at (a, b) and the approximation

f(x, y) ≈ f(a, b) + fx(a, b) (x− a) + fy(a, b) (y − b)

is called the linear approximation or the tangent plane approximation of f at (a, b).

Example Let f : R2 → R be a function of two variables defined by

f(x, y) =


xy

x2 + y2
if (x, y) ̸= (0, 0),

0 if (x, y) = (0, 0).

Note that fx(0, 0) = 0 and fy(0, 0) = 0, but fx and fy are not continuous at (0, 0), and the
surface z = f(x, y) does not have a tangent plane at (0, 0).

Example Show that f(x, y) = xexy is differentiable at (1, 0) and find its linearization there.
Then use it to approximate f(1.1,−0.1).

Definition Let D be an open subset of R2 and let f : D → R be a differentiable function defined
on D. The differential df is defined by

df = fx(x, y)dx+ fy(x, y)dy

Note that the differentials

� dy = f ′(x)dx = the change in height of the tangent line,

� dz = fx(x, y)dx+ fy(x, y)dy = the change in height of the tangent plane,

whereas the increments

� ∆y = f(x+∆x)− f(x) = the change in height of the curve y = f(x),
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� ∆z = f(x+∆x, y +∆y)− f(x, y) = the change in height of the surface z = f(x, y),

and ∆z − dz = R = the gaps between surface and tangent plane satisfies that

lim
(∆x,∆y)→(0,0)

R√
(∆x)2 + (∆y)2

= 0 by Taylor’s Theorem.

Examples

1. If z = f(x, y) = x2 + 3xy − y2, find the differential dz = df.

2. If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of ∆z and dz.

3. The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm, and each
measurement is correct to within ε cm.

� Use differentials to estimate the largest possible error when the volume of the box is cal-
culated from these measurements. [Let x, y and z be the dimensions of the box. Since its
volume V = xyz and the error ∆V ≈ dV = yzdx+xzdy+xydz = 9900ε, the maximum er-
ror in the calculated volume is about 9900 times larger than the error in each measurement
taken.]

� What is the estimated maximum error in the calculated volume if the measured dimensions
are correct to within 0.2 cm. [If the largest error in each measurement is ε = 0.2 cm, then
dV = 9900(0.2) = 1980, so an error of only 0.2 cm in measuring each dimension could lead
to an error of approximately 1980 cm3 (1.1%) in the calculated volume 180, 000 cm3.]

Chain Rule

(a) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t)
are both differentiable functions of t. Then z is a differentiable function of t and

dz

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
.

(b) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and
y = h(s, t) are both differentiable functions of s and t. Then

∂z

∂s
=

∂f

∂x

∂x

∂s
+

∂f

∂y

∂y

∂s
and

∂z

∂t
=

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
.
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(c) In general, if u is a differentiable function of n variables x1, x2, . . . , xn and each xj is a
differentiable function of the m variables t1, t2, . . . , tm. The u is a function of t1, t2, . . . , tm and
for each i = 1, 2, . . . ,m, we have

∂u

∂ti
=

∂u

∂x1

∂x1

∂ti
+

∂u

∂x2

∂x2

∂ti
+ · · ·+ ∂u

∂xn

∂xn

∂ti
=

n∑
j=1

∂u

∂xj

∂xj

∂ti

Examples

1. If z = x2y + 3xy4, where x = sin 2t and y = cos t, find
dz

dt
when t = 0.

2. If z = ex sin y, where x = st2 and y = s2t, find
∂z

∂s
and

∂z

∂t
.

3. If F is differentiable on a disk containing (a, b), then the equation F (x, y) = 0 defines y
implicitly as a differentiable function of x near the point (a, b) and we can apply the Chain
Rule to differentiate both sides of F (x, y) = 0 with respect to x, and obtain

∂F

∂x

dx

dx
+

∂F

∂y

dy

dx
= 0 =⇒ dy

dx
= −∂F/∂x

∂F/∂y
if

∂F

∂y
̸= 0,

e.g. find y′ if x3 + y3 = 6xy.

4. Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form
F (x, y, z) = 0, i.e. F (x, y, f(x, y)) = 0 for all (x, y) in the domain of f.

If F and f are differentiable, then we can use the Chain Rule to differentiate the equation
F (x, y, z) = 0 with respect to x and y, and obtain

∂F

∂x

∂x

∂x
+

∂F

∂y

∂y

∂x
+

∂F

∂z

∂z

∂x
= 0

∂y/∂x=0
=⇒

∂x/∂x=1

∂z

∂x
= −∂F/∂x

∂F/∂z
if

∂F

∂z
̸= 0,

∂F

∂x

∂x

∂y
+

∂F

∂y

∂y

∂y
+

∂F

∂z

∂z

∂y
= 0

∂x/∂y=0
=⇒

∂y/∂y=1

∂z

∂y
= −∂F/∂y

∂F/∂z
if

∂F

∂z
̸= 0.

Directional Derivatives and the Gradient Vector

Definition Let D be a subset of R2, (x0, y0) be an interior point of D, and let f : D → R be a
function on D. Then the directional derivative of f at (x0, y0) in the direction of a unit vector
u = (a, b) is

Duf(x0, y0) = lim
h→0

f(x0 + ha, y0 + hb)− f(x0, y0)

h
if this limit exists.

Remarks

(a) If u = i = (1, 0), then Dif = fx and if u = j = (0, 1), then Djf = fy.

(b) If f is a differentiable function of x and y, then f has a directional derivative in the direction
of any unit vector u = (a, b) and

Duf(x, y) = fx(x, y)a+ fy(x, y)b= (fx(x, y), fy(x, y)) · (a, b) = ∇f(x, y) · (a, b),

where ∇f(x, y) = (fx(x, y), fy(x, y)) is called the gradient (vector) of f, or grad f, at (x, y).
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Furthermore, since u = (a, b) is a unit vector, there exists an angle θ measured from the positive
x-axis to u in the counterclockwise direction such that u = (cos θ, sin θ). Then

Duf(x, y) = ∇f(x, y) · (cos θ, sin θ) is a function of x, y and θ.

Theorem Suppose f is a differentiable function of two or three variables. The maximum value
of the directional derivative Duf(p) is |∇f(p)| and it occurs when u has the same direction as
the gradient vector ∇f(p).

Examples

1. Let f(x, y) = sin x + exy, (x, y) ∈ R2. Find ∇f(1, 0) and find points (x, y) such that
∇f(x, y) = (0, 0).

2. Let f(x, y, z) = x sin yz, (x, y, z) ∈ R3. (a) Find the gradient of f and (b) find the directional
derivative of f at (1, 3, 0) in the direction of v = i+ 2j− k = (1, 2,−1).

3. Let f(x, y) = xey, (x, y) ∈ R2. (a) Find the rate of change of f at the point p = (2, 0) in
the direction from p to q = (1/2, 2), and (b) determine the direction in which f has the
maximum rate of change and (c) find the maximum rate of change of f at p.

Tangent Planes to Level Surfaces

Suppose that

� S = {(x, y, z) ∈ R3 | F (x, y, z) = k} is a level surface of F in R3,
� p = (x0, y0, z0) is a point in S,

� C ⊂ S is any differentiable curve in S passing through p, and parametrized by r(t) =
(x(t), y(t), z(t)), t ∈ I = (a, b), with r(t0) = p for some t0 ∈ I.

Since C = {r(t) | t ∈ I} ⊂ S, and by the Chain Rule, we have

F (x(t), y(t), z(t)) = k =⇒ d

dt
F (x(t), y(t), z(t)) = 0 for all t ∈ I

=⇒ ∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
+

∂F

∂z

dz

dt
= (

∂F

∂x
,
∂F

∂y
,
∂F

∂x
) · (dx

dt
,
dy

dt
,
dz

dt
) = ∇F (r(t)) · r′(t) = 0 for all t ∈ I.

In particular, we have
∇F (x0, y0, z0) · r′(t0) = 0,
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which implies that if ∇F (x0, y0, z0) ̸= (0, 0, 0), ∇F (x0, y0, z0) is perpendicular to the tangent
vector r′(t0) to any curve C in S passing through p = r(t0) = (x0, y0, z0), and the tangent plane
to the level surface F (x, y, z) = k at p = (x0, y0, z0) has an equation

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

Example Find the equations of the tangent plane and normal line to ellipsoid

x2

4
+ y2 +

z2

9
= 3 at the point (−2, 1,−3).

Properties of the Gradient Vector Let f be a differentiable function of two or three variables
and suppose that ∇f(p) ̸= 0 (zero vector in R2 or R3). Then

� The directional derivative of f at p in the direction of a unit vector u is given by Duf(p) =
∇f(p) · u.

� ∇f(p) points in the direction of maximum rate of increase of f at p, and that maximum
rate of change is |∇f(p)|.

� ∇f(p) is perpendicular to the level curve or level surface of f through p.

Examples The figure on the right shows level sets of a height function or f(x, y) = x2− y2 with
a gradient vector fields.

Definition Let f : D ⊂ Rn → R be a real-valued function defined on D. Then

� f is said to have a local maximum value at p if there exists r > 0 such that Br(p) ⊂ D and

f(x) ≤ f(p) for all x ∈ Br(p).

� f is said to have a local minimum value at p if there exists r > 0 such that Br(p) ⊂ D and

f(x) ≥ f(p) for all x ∈ Br(p).

Therem (First derivatives Test) If f has a local maximum or minimum at p and if the first
partial derivatives of f exist at p, then ∇f(p) = (fx1 , fx2 , . . . , fxn)(p) = (0, 0, . . . , 0) = 0 ∈ Rn.

Definition A point p ∈ D is called a critical point (or stationary point) of f if either ∇f(p) =
0 ∈ Rn or if ∇f(p) does not exist.
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Example Let f(x, y) = x2 + y2 − 2x− 6y+14, (x, y) ∈ R2. Find the critical points and extreme
values (or critical values) of f if exist.

Classification of Extreme Values Theorem (Second Derivatives Test) Let f : D ⊂
R2 → R be a function defined on D, p be an interior point of D and let Br(p) ⊂ D be an open
disk in D. Suppose that the second partial derivatives of f are continuous on Br(p), ∇f(p) =
(fx(p), fy(p)) = (0, 0) and that

D = fxx(p)fyy(p)− [fxy(p)]
2 =

∣∣∣∣fxx(p) fxy(p)
fyx(p) fyy(p)

∣∣∣∣ .
(a) If D > 0 and fxx(p) > 0, then f(p) is a local minimum.

(b) If D > 0 and fxx(p) < 0, then f(p) is a local maximum.

(c) If D < 0, then (p, f(p)) is a saddle point of the graph of f.

(d) If D = 0, the test is inconclusive: f could have a local maximum or local minimum at p or
(p, f(p)) could be a saddle point of the graph of f.

Outline of the Proof Let u = (h, k) be a unit vector. For any |t| < r, since f(p + tu) has
continuous second derivative for each t ∈ (−r, r) and since

d

dt
f(p+ tu)|t=0 =

[
fx(p+ tu)h+ fy(p+ tu)k

]
|t=0 = fx(p)h+ fy(p)k = ∇f(p) · (h, k) = 0,

and
d2

dt2
f(p+ tu)|t=0 =

d

dt

[
fx(p+ tu)h+ fy(p+ tu)k

]
|t=0

=
[
fxx(p+ tu)h2 + fxy(p+ tu)hk + fyx(p+ tu)kh+ fyy(p+ tu)k2

]
|t=0

= fxx(p)h
2 + 2fxy(p)hk + fyy(p)k

2 = fxx(p)

(
h+

fxy(p)

fxx(p)
k

)2

+
k2

fxx(p)

(
fxx(p)fyy(p)− f 2

xy(p)
)
,

so by the Taylor’s Theorem and for each |t| < r and for any unit vector u = (h, k) ∈ R2, we have

f(p+ tu)− f(p) =

(
d

dt
f(p+ tu)|t=0

)
t+

(
1

2

d2

dt2
f(p+ tu)|t=0

)
t2 +R(t)

=

[
fxx(p)

(
h+

fxy(p)

fxx(p)
k

)2

+
k2

fxx(p)

(
fxx(p)fyy(p)− f 2

xy(p)
)] t2

2
+R(t),

where lim
t→0

R(t)

t2
= 0. Hence, the theorem follows by using the second derivative test for functions

of one variable.

Remark Setting a = fxx(p), b = fxy(p), c = fyy(p), note that

� if a ̸= 0 and ac− b2 > 0, then

ax2 + 2bxy + cy2 = a

(
x2 +

2b

a
xy +

b2

a2
y2
)
+

(
c− b2

a

)
y2

= a

(
x+

b

a
y

)2

+
ac− b2

a
y2

{
≥ 0 if a > 0

≤ 0 if a < 0
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� if a ̸= 0 and ac− b2 < 0, then

ax2 + 2bxy + cy2 = a

(
x+

b

a
y

)2

− b2 − ac

a
y2

= a

(
x+

b

a
y +

√
b2 − ac

a
y

)(
x+

b

a
y −

√
b2 − ac

a
y

)

and (0, 0, 0) is a saddle point of the graph of z = ax2+2bxy+cy2 since x+
b±

√
b2 − ac

a
y = 0

are distinct lines dividing xy-plane into 4 regions around (0, 0).

� if a = 0 and ac− b2 < 0 =⇒ b ̸= 0, then ax2 + 2bxy + cy2 = by (2x+ cy) and (0, 0, 0) is a
saddle point of the graph of z = ax2 + 2bxy + cy2 since y = 0 and 2x+ cy = 0 are distinct.

Definitions Let D be a subset of Rn and let f : D ⊂ Rn → R be a function defined on D. Then

� D is called a bounded subset of Rn if there exists a rectangular box R = [a1, b1]× [a2, b2]×
· · · × [an, bn] = {(x1, x2, . . . , xn) ∈ Rn | ai ≤ xi ≤ bi, 1 ≤ i ≤ n} such that D ⊂ R, or if
there exists r > 0 such that D ⊂ Br(0), where 0 ∈ Rn.

� D is called an open subset of Rn if for each p ∈ D there exists r > 0 such that Br(p) ⊂ D,
i.e. every point in D is an interior point of D.

� D is called a closed subset of Rn if its complement Dc = {x ∈ Rn | x /∈ D} is an open
subset of Rn.

� f(p) is called the absolute maximum (value) of f on D if f(x) ≤ f(p) for all x ∈ D;
f(p) is called the absolute minimum (value) of f on D if f(x) ≥ f(p) for all x ∈ D.

Theorem (Extreme Value Theorem) If f : D ⊂ Rn → R is continuous on a closed, bounded
set D in Rn, then there exist p, q ∈ D such that

f(p) ≥ f(x) ≥ f(q) for all x ∈ D ⇐⇒ max
x∈D

f(x) = f(p) and min
x∈D

f(x) = f(q).

Remark If f has extreme values at p, q ∈ D ⊂ R2, since p (or q) is either a critical point of f
or a boundary point D, we shall find the absolute maximum and minimum of f on D as follows.

1. Find the values of f at the critical points of f in D.

2. Find the extreme values of f on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest
of these values is the absolute minimum value.

Example Find the absolute maximum and minimum of f(x, y) = x2−2xy+2y on the rectangle
D = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
Method of Lagrange Multipliers

Let f : R3 → R be a differentiable function defined on R3 and let S = {(x, y, z) | g(x, y, z) = k}
be a (level) surface defined by g(x, y, z) = k. Suppose that

� ∇g ̸= 0 (vector) on the surface g(x, y, z) = k,

� there is a point p = (x0, y0, z0) ∈ S such that

either f(p) = max{f(x, y, z) | g(x, y, z) = k} or f(p) = min{f(x, y, z) | g(x, y, z) = k}.
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Let C be a smooth curve passing through p on S given by the vector equation

C : r(t) = (x(t), y(t), z(t)), t ∈ I = (a, b) and r(t0) = p for some t0 ∈ I.

Since f(r(t)) has an extreme value at an interior point t = t0 and g(x(t), y(t), z(t)) = k for all
t ∈ I, we have

0 =
d

dt
f(x(t), y(t), z(t))|t=t0 = ∇f(p) · r′(t0),

0 =
d

dt
k =

d

dt
g(x(t), y(t), z(t))|t=t0 = ∇g(p) · r′(t0),

=⇒ ∇f(p) ⊥ r′(t0), ∇g(p) ⊥ r′(t0) for each r′(t0) ̸= 0 ∈ Tr(t0)S

=⇒ ∇f(p), ∇g(p) ⊥ TpS ⊂ R3 and ∇f(p) // ∇g(p).

This suggests that we can use the following procedures (Method of Lagrange Multipliers) to find
the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k.

Step 1. Find all values of x, y, z and λ such that{
∇f(x, y, z) = λ∇g(x, y, z) (3 equations of x, y, z, λ),

g(x, y, z) = k (an equation of x, y, z).

Step 2. Evaluate f at all the points (x, y, z) that result from Step 1. The largest of these values
is the maximum value of f and the smallest is the minimum value of f.

Example A rectangular box without a lid is to be made from 12m2 of cardboard. Find the
maximum volume of such a box (with x, y, z being the length, width and height, respectively).

Solution To maximize V = xyz subject to A = xy+2xz+2yz = 12, we find all possible x, y, z, λ
such that

(Vx, Vy, Vz) = λ(Ax, Ay, Az), A = 12

⇐⇒ yz
(1)
= λ(y + 2z), xz

(2)
= λ(x+ 2z), xy

(3)
= λ(2x+ 2y), xy + 2xz + 2yz

(4)
= 12

x(1)−y(2)⇐⇒
x(1)−z(3)

2λ(x− y)z = 0, xz
(2)
= λ(x+ 2z), λ(y − 2z)x = 0, xy + 2xz + 2yz = 12

=⇒ x = y = 2z, xz
(2)
= λ(x+ 2z), xy + 2xz + 2yz = 12

=⇒ 2z2
(2)
= 4λz, xy + 2xz + 2yz = 12

=⇒ z
(2)
= 2λ, x = y = 2z = 4λ, xy + 2xz + 2yz = 48λ2 = 12

Thus we have λ =
1

2
, x = y = 2, z = 1, and the maximum volume V = V (2, 2, 1) = 4.

Suppose now that we want to find the maximum and minimum values of a function f(x, y, z)
subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x, y, z) = c.

Following the method of Lagrange multiplier, we need to find all values of x, y, z, λ and µ such
that 

∇f(x, y, z) = λ∇g(x, y, z) + µ∇h(x, y, z),

g(x, y, z) = k,

h(x, y, z) = c.
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Geometrically, this means that we are looking for the extreme values of f when (x, y, z) is
restricted to lie on the curve of intersection C of the level surfaces g(x, y, z) = k and h(x, y, z) = c.

Example Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of
intersection of the plane x− y + z = 1 and the cylinder x2 + y2 = 1.

Solution To maximize f(x, y, z) = x + 2y + 3z subject to g(x, y, z) = x − y + z = 1 and
h(x, y, z) = x2 + y2 = 1, we find all possible x, y, z, λ, µ such that

(fx, fy, fz) = λ(gx, gy, gz) + µ(hx, hy, zz),

g = 1,

h = 1

⇐⇒


(fx, fy, fz) = λ(gx, gy, gz) + µ(hx, hy, zz),

g = 1,

h = 1

⇐⇒


(1, 2, 3) = λ(1,−1, 1) + µ(2x, 2y, 0)= (λ+ 2µx,−λ+ 2µy, λ),

x− y + z = 1,

x2 + y2 = 1

⇐⇒


λ = 3, 1

(1)
= 3 + 2µx, 2

(2)
= −3 + 2µy,

x− y + z = 1,

x2 + y2 = 1

x(2)−y(1)
=⇒ λ = 3, x

(3)
= −2

5
y, x− y + z

(4)
= 1, x2 + y2

(5)
= 1

(3)→(5)
=⇒ λ = 3, y = ± 5√

29
, x

(3)
= ∓ 2√

29
, x− y + z

(4)
= 1

(4)
=⇒ λ = 3, y = ± 5√

29
, x

(3)
= ∓ 2√

29
, z

(4)
= 1± 7√

29

Hence f(− 2√
29

,
5√
29

, 1 +
7√
29

, ) = 3 +
√
29 and f(

2√
29

,− 5√
29

, 1 − 7√
29

, ) = 3 −
√
29 are

respectively the maximum and minimum values of f subject to g(x, y, z) = x − y + z = 1 and
h(x, y, z) = x2 + y2 = 1.
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