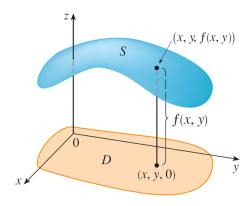
Functions of Several Variables

Definition Let D be a subset of \mathbb{R}^2 , and let $f: D \to \mathbb{R}$ be a function defined on D. Then the graph of f on D is a subset in \mathbb{R}^3 defined by

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y) \text{ and } (x, y) \in D\} \subset \mathbb{R}^3.$$



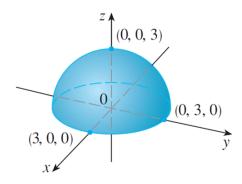
Examples

• If $(a, b) \neq (0, 0)$, the graph of the linear function f(x, y) = ax + by + c on \mathbb{R}^2 is a plane in \mathbb{R}^3 given by

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = ax + by + c \text{ and } (x, y) \in \mathbb{R}^2\}.$$

• The graph of $g(x,y) = \sqrt{9-x^2-y^2}$ on the closed disk $x^2+y^2 \le 9$ is the upper hemisphere with center (0,0,0) and radius 3 given by

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = \sqrt{9 - x^2 - y^2} \ge 0 \text{ and } x^2 + y^2 \le 9\}$$

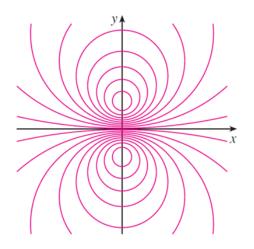


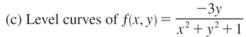
Definition Let D be a subset of \mathbb{R}^2 , and let $f: D \to \mathbb{R}$ be a function defined on D. Then a level curve of f at the level k is a subset of D given by

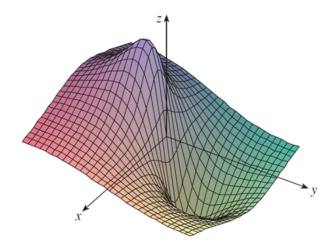
$$L_f(k) = \{(x, y) \in D \mid f(x, y) = k\} \subseteq D.$$

A collection of level curves is called a contour map of f.

Example Let $f(x,y) = \frac{-3y}{x^2 + y^2 + 1}$ for $(x,y) \in \mathbb{R}^2$. The following sketches show the level curves and the graph near the origin.







(d)
$$f(x, y) = \frac{-3y}{x^2 + y^2 + 1}$$

Remark In general, if D is a subset of \mathbb{R}^n , $f:D\to\mathbb{R}$ is a function defined on D. Then the graph of f on D is a subset in \mathbb{R}^{n+1} defined by

$$S = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{n+1} = f(x_1, \dots, x_n) \text{ and } (x_1, \dots, x_n) \in D\} \subset \mathbb{R}^{n+1}.$$

and a level set (or level curve, surface when n = 2, 3 respectively) of f at the level k is a subset of D given by

$$L_f(k) = \{(x_1, \dots, x_n) \in D \mid f(x_1, \dots, x_n) = k\} \subseteq D.$$

Limits and Continuity

Let $p \in \mathbb{R}^n$, r > 0 and let $B_r(p)$ denote the ball of center p and radius r defined by

$$B_r(p) = \{x \in \mathbb{R}^n \mid |x - p|^2 = \sum_{i=1}^n (x_i - p_i)^2 < r^2\},$$

where |x-p| is the Euclidean distance from x to p.

Definitions Let D be a subset of \mathbb{R}^n and $p \in D$. Then

• p is called an interior point of D if there exists an r > 0 such that

$$B_r(p) = \{x \in \mathbb{R}^n \mid |x - p| < r\} \subset D \iff \text{if } x \in B_r(p) \text{ then } x \in D.$$

- p is called a boundary point of D if it is not an interior point of D.
- D is called an open subset of \mathbb{R}^n if every point in D is an interior point of D.

Remark If p is a point in D, then p is either an interior point or a boundary point of D.

Example Let $D = [0,1] \cup \{2\} \subset \mathbb{R}$. Then (0,1) is the set of interior points of D while $\{0,1,2\}$ is the set of boundary points of D.

Definition Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \in \mathbb{R}$$

if for every $\varepsilon > 0$ there is a corresponding $\delta > 0$ such that

if
$$0 < |(x,y) - (a,b)| < \delta$$
 then $(x,y) \in D$ and $|f(x,y) - L| < \varepsilon$
 \iff if $(x,y) \in B_{\delta}((a,b)) \setminus \{(a,b)\}$ then $(x,y) \in D$ and $|f(x,y) - L| < \varepsilon$

Note that if $\lim_{(x,y)\to(a,b)} f(x,y)$ exists, then it is unique.

Algebraic Properties of Limits Let f, g be functions of two variables whose domain D includes points arbitrarily close to (a, b). If

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \in \mathbb{R} \quad \text{and} \quad \lim_{(x,y)\to(a,b)} g(x,y) = M \in \mathbb{R},$$

then

- (Sum and Difference Law) $\lim_{(x,y)\to(a,b)}[f\pm g](x,y)=L\pm M$
- (Product Law) $\lim_{(x,y)\to(a,b)} [f\times g](x,y) = L\times M$
- (Quotient Law) $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}$ provided that $g(x,y) \neq 0$ for (x,y) close to (a,b) and the limit of the denominator is not 0.

Proposition (Squeeze Theorem) Let $f, \ell, r : D \to \mathbb{R}$ be functions of two variables whose domain D includes points arbitrarily close to (a, b). Suppose that

$$\ell(x,y) \le f(x,y) \le r(x,y)$$
 for all $(x,y) \in D \setminus \{(a,b)\},\$

and

$$\lim_{(x,y)\to(a,b)} \ell(x,y) = L = \lim_{(x,y)\to(a,b)} r(x,y).$$

Then $\lim_{(x,y)\to(a,b)} f(x,y) = L$.

Definition Let D be a subset of \mathbb{R}^2 , $f: D \to \mathbb{R}$ be a function defined on D and let (a, b) be an interior point of D. Then f is said to be continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b),$$

i.e. for every $\varepsilon > 0$ there is a corresponding $\delta > 0$ such that

if
$$|(x,y)-(a,b)| < \delta$$
 then $(x,y) \in D$ and $|f(x,y)-f(a,b)| < \varepsilon$
 \iff if $(x,y) \in B_{\delta}((a,b))$ then $(x,y) \in D$ and $|f(x,y)-f(a,b)| < \varepsilon$

We say that f is continuous on D if f is continuous at every point (a, b) in D.

Algebraic Properties of Continuous Functions Let f and g be functions of two variables whose domain D includes points arbitrarily close to (a, b). If f and g are continuous at (a, b), i.e.

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b) \quad \text{and} \quad \lim_{(x,y)\to(a,b)} g(x,y) = g(a,b),$$

then so is the

• (Sum and Difference) $f \pm g$ since $\lim_{(x,y)\to(a,b)} [f\pm g](x,y) = f(a,b)\pm g(a,b)$.

- (Product) $f \times g$ since $\lim_{(x,y)\to(a,b)} [f \times g](x,y) = f(a,b) \times g(a,b)$.
- (Quotient) $\frac{f}{g}$ provided that $g(a,b) \neq 0$ since $\lim_{(x,y)\to(a,b)} \frac{f(x,y)}{g(x,y)} = \frac{f(a,b)}{g(a,b)}$.

Examples

- 1. Show that $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2} = 1.$
- 2. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+y^2}$ does not exist.
- 3. Evaluate $\lim_{(x,y)\to(1,2)} (x^2y^3 x^3y^2 + 3x + 2y)$.
- 4. Where is the function $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$ continuous?

Remark In general, if D is a subset of \mathbb{R}^n and $f:D\to\mathbb{R}$ is a real-valued function defined on D includes points arbitrarily close to p, then we say that $\lim_{x\to p} f(x) = L$ if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that

$$\mbox{if } 0 < |x - p| < \delta \mbox{ then } x \in D \mbox{ and } |f(x) - L| < \varepsilon, \\ \iff \mbox{if } x \in B_{\delta}(p) \setminus \{p\} \mbox{ then } x \in D \mbox{ and } |f(x) - L| < \varepsilon. \\$$

If $p \in D$, then we say that f is continuous at p if $\lim_{x\to p} f(x) = f(p)$, i.e. if for every $\varepsilon > 0$ there is a corresponding $\delta > 0$ such that

if
$$|x - p| < \delta$$
 then $x \in D$ and $|f(x) - f(p)| < \varepsilon$
 \iff if $x \in B_{\delta}(p)$ then $x \in D$ and $|f(x) - f(p)| < \varepsilon$

Definition Let D be a subset of \mathbb{R}^2 , p = (a, b) be an interior point of D and let $f : D \to \mathbb{R}$ be a real-valued function defined on D. Then the partial derivative of f with respect to x at (a, b), denoted by $f_x(a, b)$ or $\frac{\partial f}{\partial x}(a, b)$, is defined to be

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$
 provided that the limit exists,

and the partial derivative of f with respect to y at (a,b), denoted by $f_y(a,b)$ or $\frac{\partial f}{\partial y}(a,b)$, is defined to be

$$f_y(a,b) = \lim_{h \to 0} \frac{f(a,b+h) - f(a,b)}{h}$$
 provided that the limit exists.

Remark Recall that if $f: \mathbb{R} \to \mathbb{R}$ is differentiable at x = a, then $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ exists and f is continuous at x = a since

$$\lim_{x\to a}[f(x)-f(a)] = \lim_{x\to a}\left[\frac{f(x)-f(a)}{x-a}\cdot(x-a)\right] = \lim_{x\to a}\frac{f(x)-f(a)}{x-a}\cdot\lim_{x\to a}(x-a) = 0 \implies \lim_{x\to a}f(x) = f(a).$$

However, the existence of partial derivatives for a function of several variables do not always guarantee the continuity of the function.

Example Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables defined by

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

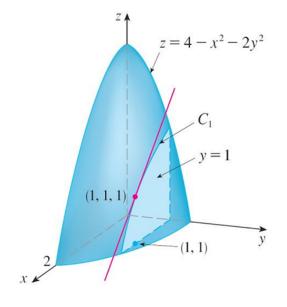
- 1. Show that f is not continuous at (0,0).
- 2. Find $f_x(0,0)$ and $f_y(0,0)$.

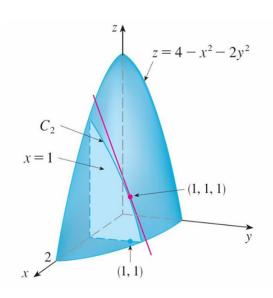
Remark Let D be an open subset of \mathbb{R}^2 and let $f: D \to \mathbb{R}$ be a real-valued function defined on D. Suppose that the partial derivatives f_x and f_y exist at every point in D, then the functions f_x , $f_y: D \to \mathbb{R}$ are defined by

$$f_x(x,y) = \lim_{h\to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
 differentiate f with respect to x by treating y as a constant, $f_y(x,y) = \lim_{h\to 0} \frac{f(x,y+h) - f(x,y)}{h}$ differentiate f with respect to y by treating x as a constant.

Examples

- 1. If $f(x,y) = x^3 + x^2y^3 2y^2$, find $f_x(2,1)$ and $f_y(2,1)$.
- 2. If $f(x,y) = 4 x^2 2y^2$, find $f_x(1,1)$ and $f_y(1,1)$ and interpret these numbers as slopes.





- 3. If $f(x, y, z) = e^{xy} \ln z$, find f_x , f_y , and f_z .
- 4. If $f(x,y) = x^3 + x^2y^3 2y^2$, find the second partial derivatives $f_{xx} = (f_x)_x$, $f_{xy} = (f_x)_y$, $f_{yx} = (f_y)_x$, and $f_{yy} = (f_y)_y$.

Clairaut's Theorem Suppose f is defined on a disk D that contains the point (a, b). If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Examples

1. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables defined by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Show that

$$f_x(x,y) = \begin{cases} \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2} & \text{if } (x,y) \neq (0,0) & \text{by direct differentiation,} \\ 0 & \text{if } (x,y) = (0,0) & \text{by definition of partial derivative,} \end{cases}$$

$$f_y(x,y) = \begin{cases} \frac{-y^4x - 4y^2x^3 + x^5}{(y^2 + x^2)^2} & \text{if } (x,y) \neq (0,0) \text{ by direct differentiation,} \\ 0 & \text{if } (x,y) = (0,0) \text{ by definition of partial derivative,} \end{cases}$$

and that $f_{xy}(0,0) = -1 \neq 1 = f_{yx}(0,0)$ by definition of partial derivatives.

2. Show that the function $u(x,y) = e^x \sin y$ is a solution of the Laplace equation, that is $\Delta u = u_{xx} + u_{yy} = 0$.

Definition Let $D \subset \mathbb{R}^2$, (a, b) be an interior point of D and let $f : D \to \mathbb{R}$ be a function defined on D. Then f is called differentiable at (a, b) if there exists $(\ell_1, \ell_2) \in \mathbb{R}^2$ such that

$$\lim_{(x,y)\to(a,b)} \frac{|f(x,y)-f(a,b)-\ell_1(x-a)-\ell_2(y-b)|}{|(x,y)-(a,b)|} = 0.$$

$$\iff \lim_{(x,y)\to(a,b)} \frac{|\varepsilon(x,y)|}{\sqrt{(x-a)^2+(y-b)^2}} = 0, \text{ where } \varepsilon(x,y) = f(x,y)-f(a,b)-\ell_1(x-a)-\ell_2(y-b)$$

Theorem If f is differentiable at (a, b), then the partial derivatives f_x and f_y exist at (a, b) and $(\ell_1, \ell_2) = (f_x(a, b), f_y(a, b))$.

Proof Since

$$0 = \lim_{(x,b)\to(a,b)} \frac{|f(x,b) - f(a,b) - \ell_1(x-a) - \ell_2(b-b)|}{|(x,b) - (a,b)|} = \lim_{x\to a} \frac{|f(x,b) - f(a,b) - \ell_1(x-a)|}{|x-a|}$$

$$\implies 0 = \lim_{x\to a} \frac{f(x,b) - f(a,b) - \ell_1(x-a)}{x-a} = \lim_{x\to a} \frac{f(x,b) - f(a,b)}{x-a} - \ell_1 = f_x(a,b) - \ell_1,$$

and

$$0 = \lim_{(a,y)\to(a,b)} \frac{|f(a,y) - f(a,b) - \ell_1(a-a) - \ell_2(y-b)|}{|(a,y) - (a,b)|} = \lim_{y\to b} \frac{|f(a,y) - f(a,b) - \ell_2(y-b)|}{|y-b|}$$

$$\implies 0 = \lim_{y\to b} \frac{f(a,y) - f(a,b) - \ell_2(y-b)}{y-b} = \lim_{y\to b} \frac{f(a,y) - f(a,b)}{y-b} - \ell_2 = f_y(a,b) - \ell_2.$$

Theorem If the partial derivatives f_x and f_y exist near (a, b) and are continuous at (a, b), then f is differentiable at (a, b), that is,

$$\lim_{(x,y)\to(a,b)} \frac{|f(x,y)-f(a,b)-f_x(a,b)(x-a)-f_y(a,b)(y-b)|}{|(x,y)-(a,b)|} = 0.$$

Proof For each $\varepsilon > 0$, since f_x and f_y exist near (a, b) and are continuous at p = (a, b), there exists a $\delta > 0$ such that if $(x, y) \in B_{\delta}(p)$, then

$$|f_x(x,y) - f_x(a,b)| + |f_y(x,y) - f_y(a,b)| < \varepsilon.$$

Let $g: B_{\delta}(p) \to \mathbb{R}$ be defined by

$$g(x,y) = f(x,y) - f(a,b) - f_x(a,b)(x-a) - f_y(a,b)(y-b)$$
 for $(x,y) \in B_{\delta}(p)$.

Then g(a,b) = 0,

$$g_x(x,y) = f_x(x,y) - f_x(a,b)$$
 and $g_y(x,y) = f_x(x,y) - f_y(a,b)$.

Let the line segment in $B_{\delta}(p)$ from (x,y) to p=(a,b) be given by

$$r(t) = (a, b) + t(x - a, y - b), t \in [0, 1],$$

and consider the function

$$g(r(t)) = g(x(t), y(t)) = g(a + t(x - a), b + t(y - b))$$
 for $t \in [0, 1]$.

By the Mean Value Theorem, there is a $0 < t_0 < 1$ with $r(t_0) = (x_0, y_0)$, such that

$$|g(r(1)) - g(r(0))| = |\frac{d}{dt}g(r(t))|_{t=t_0}(1-0)| = |\frac{d}{dt}g(x(t), y(t))|_{t=t_0}|$$

$$= |g_x(x_0, y_0)x'(t_0) + g_y(x_0, y_0)y'(t_0)|$$

$$= |[f_x(x_0, y_0) - f_x(a, b)](x-a) + [f_y(x_0, y_0) - f_y(a, b)](y-b)|$$

$$\leq (|f_x(x_0, y_0) - f_x(a, b)| + |f_y(x_0, y_0) - f_y(a, b)|) \sqrt{(x-a)^2 + (y-b)^2}$$

$$< \varepsilon \sqrt{(x-a)^2 + (y-b)^2} = \varepsilon |(x, y) - (a, b)|$$

Since

$$g(r(1)) = g(x,y) = f(x,y) - f(a,b) - f_x(a,b)(x-a) - f_y(a,b)(y-b), \ g(r(0)) = g(a,b) = 0,$$

we have

$$|f(x,y) - f(a,b) - f_x(a,b)(x-a) - f_y(a,b)(y-b)| = |g(r(1)) - g(r(0))| < \varepsilon |(x,y) - (a,b)|,$$

which implies that

$$\frac{|f(x,y) - f(a,b) - f_x(a,b)(x-a) - f_y(a,b)(y-b)|}{|(x,y) - (a,b)|} < \varepsilon.$$

Since $\varepsilon > 0$ is an arbitrary positive number, we have

$$\lim_{(x,y)\to(a,b)} \frac{|f(x,y) - f(a,b) - f_x(a,b)(x-a) - f_y(a,b)(y-b)|}{|(x,y) - (a,b)|} = 0$$

and f is differentiable at (a, b).

Equation of a Tangent Plane Let $D \subset \mathbb{R}^2$ and $f: D \to \mathbb{R}$ be a function with continuous partial derivatives. Then the plane tangent to the surface

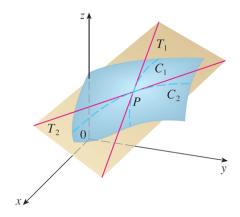
$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y) \text{ and } (x, y) \in D\},$$

at the point $P(x_0, y_0, z_0) \in S$ has an equation

$$z - z_0 = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0).$$

Proof Let C_1 and C_2 be the curves obtained by intersecting the vertical planes $y = y_0$ and $x = x_0$ with the surface S. Then the point P lies on both C_1 and C_2 . Let T_1 and T_2 be the tangent lines to the curves C_1 and C_2 at the point P.

Then the plane tangent to the surface S at the point P is defined to be the plane that contains both tangent lines T_1 and T_2 .



Since $C_1 = S \cap \{(x, y_0, z) \mid (x, z) \in \mathbb{R}^2\}$ and $C_2 = S \cap \{(x_0, y, z) \mid (y, z) \in \mathbb{R}^2\}$ are curves in S, we may parametrize C_1 and C_2 by vector function

This implies that the tangent plane to the surface S at the point P is perpendicular the vector

$$(1, 0, f_x(x_0, y_0)) \times (0, 1, f_y(x_0, y_0)) = (-f_x(x_0, y_0), -f_y(x_0, y_0), 1),$$

and has an equation

$$(x - x_0, y - y_0, z - z_0) \cdot (-f_x(x_0, y_0), -f_y(x_0, y_0), 1)\rangle = 0 \quad \text{since } \cos \frac{\pi}{2} = 0$$

$$\iff -f_x(x_0, y_0) (x - x_0) - f_y(x_0, y_0) (y - y_0) + (z - z_0) = 0$$

$$\iff z - z_0 = f_x(x_0, y_0) (x - x_0) + f_y(x_0, y_0) (y - y_0).$$

Example Find an equation for the plane tangent to the elliptic paraboloid $z = 2x^2 + y^2$ at the point (1, 1, 3).

Definition Let $D \subset \mathbb{R}^2$, (a, b) be an interior point of D and let $f: D \to \mathbb{R}$ be a function with continuous partial derivatives. The linear function $L: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$L(x,y) = f(a,b) + f_x(a,b) (x-a) + f_y(a,b) (y-b)$$
 for all $(x,y) \in \mathbb{R}^2$

is called the linearization of f at (a,b) and the approximation

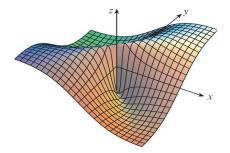
$$f(x,y) \approx f(a,b) + f_x(a,b) (x-a) + f_y(a,b) (y-b)$$

is called the linear approximation or the tangent plane approximation of f at (a, b).

Example Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a function of two variables defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

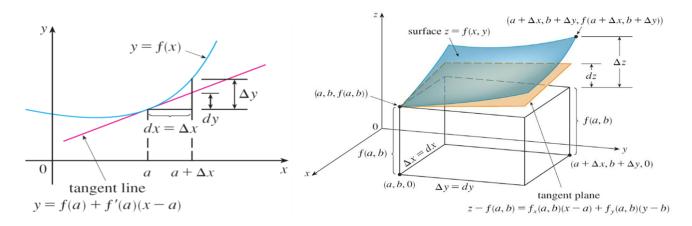
Note that $f_x(0,0) = 0$ and $f_y(0,0) = 0$, but f_x and f_y are not continuous at (0,0), and the surface z = f(x,y) does not have a tangent plane at (0,0).



Example Show that $f(x,y) = xe^{xy}$ is differentiable at (1,0) and find its linearization there. Then use it to approximate f(1.1, -0.1).

Definition Let D be an open subset of \mathbb{R}^2 and let $f: D \to \mathbb{R}$ be a differentiable function defined on D. The differential df is defined by

$$df = f_x(x, y)dx + f_y(x, y)dy$$



Note that the differentials

- dy = f'(x)dx = the change in height of the tangent line,
- $dz = f_x(x,y)dx + f_y(x,y)dy =$ the change in height of the tangent plane,

whereas the increments

• $\Delta y = f(x + \Delta x) - f(x) =$ the change in height of the curve y = f(x),

• $\Delta z = f(x + \Delta x, y + \Delta y) - f(x, y) =$ the change in height of the surface z = f(x, y),

and $\Delta z - dz = R$ = the gaps between surface and tangent plane satisfies that

$$\lim_{(\Delta x, \Delta y) \to (0,0)} \frac{R}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} = 0 \text{ by Taylor's Theorem.}$$

Examples

- 1. If $z = f(x, y) = x^2 + 3xy y^2$, find the differential dz = df.
- 2. If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Δz and dz.
- 3. The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm, and each measurement is correct to within ε cm.
 - Use differentials to estimate the largest possible error when the volume of the box is calculated from these measurements. [Let x, y and z be the dimensions of the box. Since its volume V = xyz and the error $\Delta V \approx dV = yzdx + xzdy + xydz = 9900\varepsilon$, the maximum error in the calculated volume is about 9900 times larger than the error in each measurement taken.]
 - What is the estimated maximum error in the calculated volume if the measured dimensions are correct to within 0.2 cm. [If the largest error in each measurement is $\varepsilon = 0.2$ cm, then dV = 9900(0.2) = 1980, so an error of only 0.2 cm in measuring each dimension could lead to an error of approximately $1980 \, \text{cm}^3$ (1.1%) in the calculated volume $180,000 \, \text{cm}^3$.]

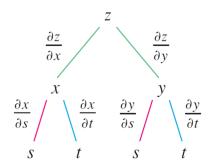
Chain Rule

(a) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(t) and y = h(t) are both differentiable functions of t. Then z is a differentiable function of t and

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

(b) Suppose that z = f(x, y) is a differentiable function of x and y, where x = g(s, t) and y = h(s, t) are both differentiable functions of s and t. Then

$$\frac{\partial z}{\partial s} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial s} \quad \text{and} \quad \frac{\partial z}{\partial t} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial t}.$$



(c) In general, if u is a differentiable function of n variables x_1, x_2, \ldots, x_n and each x_j is a differentiable function of the m variables t_1, t_2, \ldots, t_m . The u is a function of t_1, t_2, \ldots, t_m and for each $i = 1, 2, \ldots, m$, we have

$$\frac{\partial u}{\partial t_i} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial t_i} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial t_i} + \dots + \frac{\partial u}{\partial x_n} \frac{\partial x_n}{\partial t_i} = \sum_{i=1}^n \frac{\partial u}{\partial x_j} \frac{\partial x_j}{\partial t_i}$$

Examples

- 1. If $z = x^2y + 3xy^4$, where $x = \sin 2t$ and $y = \cos t$, find $\frac{dz}{dt}$ when t = 0.
- 2. If $z = e^x \sin y$, where $x = st^2$ and $y = s^2t$, find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 3. If F is differentiable on a disk containing (a, b), then the equation F(x, y) = 0 defines y implicitly as a differentiable function of x near the point (a, b) and we can apply the Chain Rule to differentiate both sides of F(x, y) = 0 with respect to x, and obtain

$$\frac{\partial F}{\partial x}\frac{dx}{dx} + \frac{\partial F}{\partial y}\frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{\partial F/\partial x}{\partial F/\partial y} \quad \text{if } \frac{\partial F}{\partial y} \neq 0,$$

e.g. find y' if $x^3 + y^3 = 6xy$.

4. Suppose that z is given implicitly as a function z = f(x, y) by an equation of the form F(x, y, z) = 0, i.e. F(x, y, f(x, y)) = 0 for all (x, y) in the domain of f.

If F and f are differentiable, then we can use the Chain Rule to differentiate the equation F(x, y, z) = 0 with respect to x and y, and obtain

$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial x} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial x} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial x} = 0 \xrightarrow[\partial x/\partial x=1]{\frac{\partial y/\partial x=0}{\partial x}} \frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z} \quad \text{if } \frac{\partial F}{\partial z} \neq 0,$$

$$\frac{\partial F}{\partial x}\frac{\partial x}{\partial y} + \frac{\partial F}{\partial y}\frac{\partial y}{\partial y} + \frac{\partial F}{\partial z}\frac{\partial z}{\partial y} = 0 \xrightarrow[\partial y/\partial y=1]{\partial x/\partial y=0} \frac{\partial z}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial z} \quad \text{if } \frac{\partial F}{\partial z} \neq 0.$$

Directional Derivatives and the Gradient Vector

Definition Let D be a subset of \mathbb{R}^2 , (x_0, y_0) be an interior point of D, and let $f: D \to \mathbb{R}$ be a function on D. Then the directional derivative of f at (x_0, y_0) in the direction of a unit vector u = (a, b) is

$$D_u f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$
 if this limit exists.

Remarks

- (a) If $u = \mathbf{i} = (1,0)$, then $D_{\mathbf{i}}f = f_x$ and if $u = \mathbf{j} = (0,1)$, then $D_{\mathbf{j}}f = f_y$.
- (b) If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector u = (a, b) and

$$D_u f(x,y) = f_x(x,y)a + f_y(x,y)b = (f_x(x,y), f_y(x,y)) \cdot (a,b) = \nabla f(x,y) \cdot (a,b),$$

where $\nabla f(x,y) = (f_x(x,y), f_y(x,y))$ is called the gradient (vector) of f, or grad f, at (x,y).

Furthermore, since u = (a, b) is a unit vector, there exists an angle θ measured from the positive x-axis to u in the counterclockwise direction such that $u = (\cos \theta, \sin \theta)$. Then

$$D_u f(x,y) = \nabla f(x,y) \cdot (\cos \theta, \sin \theta)$$
 is a function of x, y and θ .

Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_u f(p)$ is $|\nabla f(p)|$ and it occurs when u has the same direction as the gradient vector $\nabla f(p)$.

Examples

- 1. Let $f(x,y) = \sin x + e^{xy}$, $(x,y) \in \mathbb{R}^2$. Find $\nabla f(1,0)$ and find points (x,y) such that $\nabla f(x,y) = (0,0)$.
- 2. Let $f(x, y, z) = x \sin yz$, $(x, y, z) \in \mathbb{R}^3$. (a) Find the gradient of f and (b) find the directional derivative of f at (1, 3, 0) in the direction of $v = \mathbf{i} + 2\mathbf{j} \mathbf{k} = (1, 2, -1)$.
- 3. Let $f(x,y) = xe^y$, $(x,y) \in \mathbb{R}^2$. (a) Find the rate of change of f at the point p = (2,0) in the direction from p to q = (1/2, 2), and (b) determine the direction in which f has the maximum rate of change and (c) find the maximum rate of change of f at p.

Tangent Planes to Level Surfaces

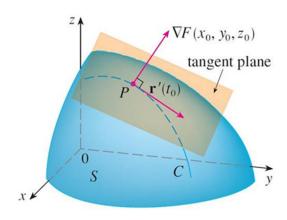
Suppose that

- $S = \{(x, y, z) \in \mathbb{R}^3 \mid F(x, y, z) = k\}$ is a level surface of F in $\mathbb{R}3$,
- $p = (x_0, y_0, z_0)$ is a point in S,
- $C \subset S$ is any differentiable curve in S passing through p, and parametrized by $r(t) = (x(t), y(t), z(t)), t \in I = (a, b)$, with $r(t_0) = p$ for some $t_0 \in I$.

Since $C = \{r(t) \mid t \in I\} \subset S$, and by the Chain Rule, we have

$$F(x(t), y(t), z(t)) = k \implies \frac{d}{dt} F(x(t), y(t), z(t)) = 0 \text{ for all } t \in I$$

$$\implies \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial y} \frac{dy}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} = \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial x}\right) \cdot \left(\frac{dx}{dt}, \frac{dy}{dt}, \frac{dz}{dt}\right) = \nabla F(r(t)) \cdot r'(t) = 0 \text{ for all } t \in I.$$



In particular, we have

$$\nabla F(x_0, y_0, z_0) \cdot r'(t_0) = 0,$$

which implies that if $\nabla F(x_0, y_0, z_0) \neq (0, 0, 0)$, $\nabla F(x_0, y_0, z_0)$ is perpendicular to the tangent vector $r'(t_0)$ to any curve C in S passing through $p = r(t_0) = (x_0, y_0, z_0)$, and the tangent plane to the level surface F(x, y, z) = k at $p = (x_0, y_0, z_0)$ has an equation

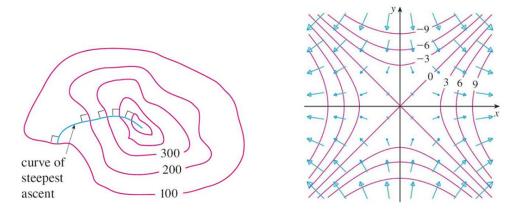
$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$

Example Find the equations of the tangent plane and normal line to ellipsoid

$$\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$$
 at the point $(-2, 1, -3)$.

Properties of the Gradient Vector Let f be a differentiable function of two or three variables and suppose that $\nabla f(p) \neq \mathbf{0}$ (zero vector in \mathbb{R}^2 or \mathbb{R}^3). Then

- The directional derivative of f at p in the direction of a unit vector u is given by $D_u f(p) = \nabla f(p) \cdot u$.
- $\nabla f(p)$ points in the direction of maximum rate of increase of f at p, and that maximum rate of change is $|\nabla f(p)|$.
- $\nabla f(p)$ is perpendicular to the level curve or level surface of f through p.



Examples The figure on the right shows level sets of a height function or $f(x, y) = x^2 - y^2$ with a gradient vector fields.

Definition Let $f: D \subset \mathbb{R}^n \to \mathbb{R}$ be a real-valued function defined on D. Then

• f is said to have a local maximum value at p if there exists r > 0 such that $B_r(p) \subset D$ and

$$f(x) \le f(p)$$
 for all $x \in B_r(p)$.

• f is said to have a local minimum value at p if there exists r > 0 such that $B_r(p) \subset D$ and

$$f(x) \ge f(p)$$
 for all $x \in B_r(p)$.

Therem (First derivatives Test) If f has a local maximum or minimum at p and if the first partial derivatives of f exist at p, then $\nabla f(p) = (f_{x_1}, f_{x_2}, \dots, f_{x_n})(p) = (0, 0, \dots, 0) = \mathbf{0} \in \mathbb{R}^n$.

Definition A point $p \in D$ is called a <u>critical point</u> (or stationary point) of f if either $\nabla f(p) = \mathbf{0} \in \mathbb{R}^n$ or if $\nabla f(p)$ does not exist.

Example Let $f(x,y) = x^2 + y^2 - 2x - 6y + 14$, $(x,y) \in \mathbb{R}^2$. Find the critical points and extreme values (or critical values) of f if exist.

Classification of Extreme Values Theorem (Second Derivatives Test) Let $f: D \subset \mathbb{R}^2 \to \mathbb{R}$ be a function defined on D, p be an interior point of D and let $B_r(p) \subset D$ be an open disk in D. Suppose that the second partial derivatives of f are continuous on $B_r(p)$, $\nabla f(p) = (f_x(p), f_y(p)) = (0, 0)$ and that

$$D = f_{xx}(p)f_{yy}(p) - [f_{xy}(p)]^2 = \begin{vmatrix} f_{xx}(p) & f_{xy}(p) \\ f_{yx}(p) & f_{yy}(p) \end{vmatrix}.$$

- (a) If D > 0 and $f_{xx}(p) > 0$, then f(p) is a local minimum.
- (b) If D > 0 and $f_{xx}(p) < 0$, then f(p) is a local maximum.
- (c) If D < 0, then (p, f(p)) is a saddle point of the graph of f.
- (d) If D = 0, the test is inconclusive: f could have a local maximum or local minimum at p or (p, f(p)) could be a saddle point of the graph of f.

Outline of the Proof Let u = (h, k) be a unit vector. For any |t| < r, since f(p + tu) has continuous second derivative for each $t \in (-r, r)$ and since

$$\frac{d}{dt}f(p+tu)|_{t=0} = \left[f_x(p+tu)h + f_y(p+tu)k\right]|_{t=0} = f_x(p)h + f_y(p)k = \nabla f(p) \cdot (h,k) = 0,$$
and
$$\frac{d^2}{dt^2}f(p+tu)|_{t=0} = \frac{d}{dt}\left[f_x(p+tu)h + f_y(p+tu)k\right]|_{t=0}$$

$$= \left[f_{xx}(p+tu)h^2 + f_{xy}(p+tu)hk + f_{yx}(p+tu)kh + f_{yy}(p+tu)k^2\right]|_{t=0}$$

$$= f_{xx}(p)h^2 + 2f_{xy}(p)hk + f_{yy}(p)k^2 = f_{xx}(p)\left(h + \frac{f_{xy}(p)}{f_{xx}(p)}k\right)^2 + \frac{k^2}{f_{xx}(p)}\left(f_{xx}(p)f_{yy}(p) - f_{xy}^2(p)\right),$$

so by the Taylor's Theorem and for each |t| < r and for any unit vector $u = (h, k) \in \mathbb{R}^2$, we have

$$f(p+tu) - f(p) = \left(\frac{d}{dt}f(p+tu)|_{t=0}\right)t + \left(\frac{1}{2}\frac{d^2}{dt^2}f(p+tu)|_{t=0}\right)t^2 + R(t)$$

$$= \left[f_{xx}(p)\left(h + \frac{f_{xy}(p)}{f_{xx}(p)}k\right)^2 + \frac{k^2}{f_{xx}(p)}\left(f_{xx}(p)f_{yy}(p) - f_{xy}^2(p)\right)\right]\frac{t^2}{2} + R(t),$$

where $\lim_{t\to 0} \frac{R(t)}{t^2} = 0$. Hence, the theorem follows by using the second derivative test for functions of one variable.

Remark Setting $a = f_{xx}(p), b = f_{xy}(p), c = f_{yy}(p),$ note that

• if $a \neq 0$ and $ac - b^2 > 0$, then

$$ax^{2} + 2bxy + cy^{2} = a\left(x^{2} + \frac{2b}{a}xy + \frac{b^{2}}{a^{2}}y^{2}\right) + \left(c - \frac{b^{2}}{a}\right)y^{2}$$
$$= a\left(x + \frac{b}{a}y\right)^{2} + \frac{ac - b^{2}}{a}y^{2}\begin{cases} \ge 0 & \text{if } a > 0\\ \le 0 & \text{if } a < 0 \end{cases}$$

• if $a \neq 0$ and $ac - b^2 < 0$, then

$$ax^{2} + 2bxy + cy^{2} = a\left(x + \frac{b}{a}y\right)^{2} - \frac{b^{2} - ac}{a}y^{2}$$
$$= a\left(x + \frac{b}{a}y + \frac{\sqrt{b^{2} - ac}}{a}y\right)\left(x + \frac{b}{a}y - \frac{\sqrt{b^{2} - ac}}{a}y\right)$$

and (0,0,0) is a saddle point of the graph of $z = ax^2 + 2bxy + cy^2$ since $x + \frac{b \pm \sqrt{b^2 - ac}}{a}y = 0$ are distinct lines dividing xy-plane into 4 regions around (0,0).

• if a = 0 and $ac - b^2 < 0 \implies b \neq 0$, then $ax^2 + 2bxy + cy^2 = by(2x + cy)$ and (0,0,0) is a saddle point of the graph of $z = ax^2 + 2bxy + cy^2$ since y = 0 and 2x + cy = 0 are distinct.

Definitions Let D be a subset of \mathbb{R}^n and let $f:D\subset\mathbb{R}^n\to\mathbb{R}$ be a function defined on D. Then

- D is called a bounded subset of \mathbb{R}^n if there exists a rectangular box $R = [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_n, b_n] = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid a_i \leq x_i \leq b_i, 1 \leq i \leq n\}$ such that $D \subset R$, or if there exists r > 0 such that $D \subset B_r(\mathbf{0})$, where $\mathbf{0} \in \mathbb{R}^n$.
- D is called an open subset of \mathbb{R}^n if for each $p \in D$ there exists r > 0 such that $B_r(p) \subset D$, i.e. every point in D is an interior point of D.
- D is called a closed subset of \mathbb{R}^n if its complement $D^c = \{x \in \mathbb{R}^n \mid x \notin D\}$ is an open subset of \mathbb{R}^n .
- f(p) is called the absolute maximum (value) of f on D if $f(x) \le f(p)$ for all $x \in D$; f(p) is called the absolute minimum (value) of f on D if $f(x) \ge f(p)$ for all $x \in D$.

Theorem (Extreme Value Theorem) If $f: D \subset \mathbb{R}^n \to \mathbb{R}$ is continuous on a closed, bounded set D in \mathbb{R}^n , then there exist $p, q \in D$ such that

$$f(p) \ge f(x) \ge f(q)$$
 for all $x \in D \iff \max_{x \in D} f(x) = f(p)$ and $\min_{x \in D} f(x) = f(q)$.

Remark If f has extreme values at $p, q \in D \subset \mathbb{R}^2$, since p (or q) is either a critical point of f or a boundary point D, we shall find the absolute maximum and minimum of f on D as follows.

- 1. Find the values of f at the critical points of f in D.
- 2. Find the extreme values of f on the boundary of D.
- 3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest of these values is the absolute minimum value.

Example Find the absolute maximum and minimum of $f(x,y) = x^2 - 2xy + 2y$ on the rectangle $D = \{(x,y) \mid 0 \le x \le 3, \ 0 \le y \le 2\}.$

Method of Lagrange Multipliers

Let $f: \mathbb{R}^3 \to \mathbb{R}$ be a differentiable function defined on \mathbb{R}^3 and let $S = \{(x, y, z) \mid g(x, y, z) = k\}$ be a (level) surface defined by g(x, y, z) = k. Suppose that

- $\nabla g \neq \mathbf{0}$ (vector) on the surface g(x,y,z) = k,
- there is a point $p = (x_0, y_0, z_0) \in S$ such that

either
$$f(p) = \max\{f(x, y, z) \mid g(x, y, z) = k\}$$
 or $f(p) = \min\{f(x, y, z) \mid g(x, y, z) = k\}$.

Let C be a smooth curve passing through p on S given by the vector equation

$$C: r(t) = (x(t), y(t), z(t)), t \in I = (a, b) \text{ and } r(t_0) = p \text{ for some } t_0 \in I.$$

Since f(r(t)) has an extreme value at an interior point $t = t_0$ and g(x(t), y(t), z(t)) = k for all $t \in I$, we have

$$0 = \frac{d}{dt} f(x(t), y(t), z(t))|_{t=t_0} = \nabla f(p) \cdot r'(t_0),$$

$$0 = \frac{d}{dt} k = \frac{d}{dt} g(x(t), y(t), z(t))|_{t=t_0} = \nabla g(p) \cdot r'(t_0),$$

$$\implies \nabla f(p) \perp r'(t_0), \nabla g(p) \perp r'(t_0) \text{ for each } r'(t_0) \neq \mathbf{0} \in T_{r(t_0)} S$$

$$\implies \nabla f(p), \nabla g(p) \perp T_p S \subset \mathbb{R}^3 \text{ and } \nabla f(p) // \nabla g(p).$$

This suggests that we can use the following procedures (Method of Lagrange Multipliers) to find the extreme values of f(x, y, z) subject to the constraint g(x, y, z) = k.

Step 1. Find all values of x, y, z and λ such that

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) & \text{(3 equations of } x, y, z, \lambda), \\ g(x, y, z) = k & \text{(an equation of } x, y, z). \end{cases}$$

Step 2. Evaluate f at all the points (x, y, z) that result from **Step** 1. The largest of these values is the maximum value of f and the smallest is the minimum value of f.

Example A rectangular box without a lid is to be made from 12m^2 of cardboard. Find the maximum volume of such a box (with x, y, z being the length, width and height, respectively).

Solution To maximize V = xyz subject to A = xy + 2xz + 2yz = 12, we find all possible x, y, z, λ such that

$$(V_{x}, V_{y}, V_{z}) = \lambda(A_{x}, A_{y}, A_{z}), A = 12$$

$$\iff yz \stackrel{(1)}{=} \lambda(y + 2z), xz \stackrel{(2)}{=} \lambda(x + 2z), xy \stackrel{(3)}{=} \lambda(2x + 2y), xy + 2xz + 2yz \stackrel{(4)}{=} 12$$

$$\stackrel{x(1)-y(2)}{\iff} 2\lambda(x - y)z = 0, xz \stackrel{(2)}{=} \lambda(x + 2z), \lambda(y - 2z)x = 0, xy + 2xz + 2yz = 12$$

$$\implies x = y = 2z, xz \stackrel{(2)}{=} \lambda(x + 2z), xy + 2xz + 2yz = 12$$

$$\implies 2z^{2} \stackrel{(2)}{=} 4\lambda z, xy + 2xz + 2yz = 12$$

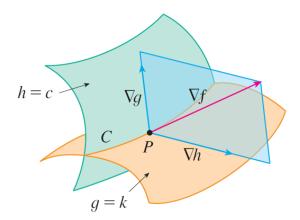
$$\implies z \stackrel{(2)}{=} 2\lambda, x = y = 2z = 4\lambda, xy + 2xz + 2yz = 48\lambda^{2} = 12$$

Thus we have $\lambda = \frac{1}{2}$, x = y = 2, z = 1, and the maximum volume V = V(2, 2, 1) = 4.

Suppose now that we want to find the maximum and minimum values of a function f(x, y, z) subject to two constraints (side conditions) of the form g(x, y, z) = k and h(x, y, z) = c.

Following the method of Lagrange multiplier, we need to find all values of x, y, z, λ and μ such that

$$\begin{cases} \nabla f(x, y, z) = \lambda \nabla g(x, y, z) + \mu \nabla h(x, y, z), \\ g(x, y, z) = k, \\ h(x, y, z) = c. \end{cases}$$



Geometrically, this means that we are looking for the extreme values of f when (x, y, z) is restricted to lie on the curve of intersection C of the level surfaces g(x, y, z) = k and h(x, y, z) = c.

Example Find the maximum value of the function f(x, y, z) = x + 2y + 3z on the curve of intersection of the plane x - y + z = 1 and the cylinder $x^2 + y^2 = 1$.

Solution To maximize f(x, y, z) = x + 2y + 3z subject to g(x, y, z) = x - y + z = 1 and $h(x, y, z) = x^2 + y^2 = 1$, we find all possible x, y, z, λ, μ such that

$$\begin{cases} (f_x, f_y, f_z) = \lambda(g_x, g_y, g_z) + \mu(h_x, h_y, z_z), \\ g = 1, \\ h = 1 \end{cases}$$

$$\iff \begin{cases} (f_x, f_y, f_z) = \lambda(g_x, g_y, g_z) + \mu(h_x, h_y, z_z), \\ g = 1, \\ h = 1 \end{cases}$$

$$\iff \begin{cases} (1, 2, \underline{3}) = \lambda(1, -1, 1) + \mu(2x, 2y, 0) = (\lambda + 2\mu x, -\lambda + 2\mu y, \underline{\lambda}), \\ x - y + z = 1, \\ x^2 + y^2 = 1 \end{cases}$$

$$\iff \begin{cases} \lambda = 3, \ 1 \stackrel{(1)}{=} 3 + 2\mu x, \ 2 \stackrel{(2)}{=} -3 + 2\mu y, \\ x - y + z = 1, \\ x^2 + y^2 = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \lambda = 3, \ 1 \stackrel{(1)}{=} 3 + 2\mu x, \ 2 \stackrel{(2)}{=} -3 + 2\mu y, \\ x - y + z = 1, \\ x^2 + y^2 = 1 \end{cases}$$

$$\stackrel{(2)-y(1)}{\implies} \lambda = 3, \ x \stackrel{(3)}{=} -\frac{2}{5}y, \ x - y + z \stackrel{(4)}{=} 1, \ x^2 + y^2 \stackrel{(5)}{=} 1$$

$$\stackrel{(3) \to (5)}{\implies} \lambda = 3, y = \pm \frac{5}{\sqrt{29}}, \ x \stackrel{(3)}{=} \mp \frac{2}{\sqrt{29}}, \ x - y + z \stackrel{(4)}{=} 1$$

$$\stackrel{(4)}{\implies} \lambda = 3, y = \pm \frac{5}{\sqrt{29}}, \ x \stackrel{(3)}{=} \mp \frac{2}{\sqrt{29}}, \ z \stackrel{(4)}{=} 1 \pm \frac{7}{\sqrt{29}}$$

Hence $f(-\frac{2}{\sqrt{29}}, \frac{5}{\sqrt{29}}, 1 + \frac{7}{\sqrt{29}},) = 3 + \sqrt{29}$ and $f(\frac{2}{\sqrt{29}}, -\frac{5}{\sqrt{29}}, 1 - \frac{7}{\sqrt{29}},) = 3 - \sqrt{29}$ are respectively the maximum and minimum values of f subject to g(x, y, z) = x - y + z = 1 and $h(x, y, z) = x^2 + y^2 = 1$.