Calculus Study Guide 12 Spring 2022

Functions of Several Variables

Definition Let D be a subset of R?, and let f : D — R be a function defined on D. Then the
graph of f on D is a subset in R? defined by

S ={(z,y,2) eR® | z = f(x,y) and (z,y) € D} C R,

Examples

e If (a,b) # (0,0), the graph of the linear function f(x,y) = ax + by + ¢ on R? is a plane in
R? given by
S={(z,y,2) €ER®| z = ax + by + c and (z,y) € R*}.

e The graph of g(z,y) = /9 — 22 — 42 on the closed disk 2> +y* < 9 is the upper hemisphere
with center (0,0,0) and radius 3 given by

S={(z,y,2) €ER*| 2= /9 —22 —y? >0 and 2° + y* < 9}

0,0,3)

Definition Let D be a subset of R?, and let f : D — R be a function defined on D. Then a level
curve of [ at the level k is a subset of D given by

Ly(k) ={(z,y) € D| f(z,y) =k} € D.
A collection of level curves is called a contour map of f.

Example Let f(x,y) = m for (z,y) € R?. The following sketches show the level curves

and the graph near the origin.
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Remark In general, if D is a subset of R", f : D — R is a function defined on D. Then the
graph of f on D is a subset in R"™! defined by

S={(z1,...,2n41) ER"™ | 2,01 = f(x1,...,7,) and (24,...,7,) € D} C R™™.

and a level set (or level curve, surface when n = 2, 3 respectively) of f at the level k is a subset
of D given by
Li(k)={(z1,...,2,) € D | f(z1,...,2,) =k} C D.

Limits and Continuity

Let p € R™ r > 0 and let B,(p) denote the ball of center p and radius r defined by

n

Br(p) = {:E € R" | |$ _p|2 = Z(gjl _pz)2 < TQ}a
i=1
where |x — p| is the Euclidean distance from x to p.

Definitions Let D be a subset of R" and p € D. Then

e p is called an interior point of D if there exists an r > 0 such that

B.(p)={z€R" ||z —p|<r} CD < if x € B.(p) then x € D.

e p is called a boundary point of D if it is not an interior point of D.

e D is called an open subset of R" if every point in D is an interior point of D.

Remark If p is a point in D, then p is either an interior point or a boundary point of D.

Example Let D = [0,1] U {2} C R. Then (0, 1) is the set of interior points of D while {0, 1,2}
is the set of boundary points of D.
Definition Let f be a function of two variables whose domain D includes points arbitrarily close
to (a,b). Then

lim )f(x,y) =LeR

(z,y)—(ab
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if for every € > 0 there is a corresponding ¢ > 0 such that

if 0 <|(z,y) — (a,b)|< d then (x,y) € D and |f(x,y) — L| < e
< if (z,y) € Bs((a,b)) \ {(a,b)} then (x,y) € D and |f(z,y) — L| < ¢
Note that if lim  f(z,y) exists, then it is unique.
(z,y)—(a,b)
Algebraic Properties of Limits Let f, g be functions of two variables whose domain D
includes points arbitrarily close to (a,b). If

lim x LeR and lim x,y) =M € R,
pm - fry) = w9 y)

then
e (Sum and Difference Law) ( l)m% ) [f £gl(x,y) =L+t M
z,y)—(a,

e (Product Law) hm [f X g|(z,y) =L x M

flz,y) L
rovided that g(z 0 for (z close to (a,b
(w)ﬁ(a yawy) M p g(x,y) # (z,9) (a,b)
and the limit of the denominator is not 0.

e (Quotient Law)

Proposition (Squeeze Theorem) Let f, ¢, r : D — R be functions of two variables whose
domain D includes points arbitrarily close to (a,b). Suppose that

Uz, y) < f(z,y) <r(x,y) forall (z,y) € D\ {(a,b)},

and

lim /l(r,y)=L= lim r(z,y).
(z,y)—(a,b) (=:9) (z,y)—(a,b) (.9)

Then lim f(x,y) = L.

(z,y)—(a,b)

Definition Let D be a subset of R?, f : D — R be a function defined on D and let (a,b) be an
interior point of D. Then f is said to be continuous at (a,b) if

lim  f(x,y) = f(a,b),

(z,y)—(a,b)
i.e. for every € > 0 there is a corresponding 6 > 0 such that

if ‘(l‘,y) - (aa b)‘< 0 then (iﬁ',y) € D and ]f(x,y) - f(aa b)l <e
< if (z,y) € Bs((a,b)) then (z,y) € D and |f(x,y) — f(a,b)| < ¢

We say that f is continuous on D if f is continuous at every point (a, b) in D.

Algebraic Properties of Continuous Functions Let f and g be functions of two variables
whose domain D includes points arbitrarily close to (a,b). If f and g are continuous at (a,b), i.e

lim x a,b) and lim x,y) = gla,b
wm | F@y) = fla,0) (my)ﬁ(ab)g( ,y) = g(a,b),

then so is the

e (Sum and Difference) f =+ g since ( l)urz b)[f + g](z,y) = f(a,b) £ g(a,b).
x,y)—(a,
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e (Product) f x g since lim [f X g|(z,y) = f(a,b) X g(a,b).

(z,y)—(a,b)
e (Quotient) / provided that g(a,b) # 0 since  lim J(z,9) = f(a,b)
g

@) —b) g(z,y)  g(a,b)

Examples
: 2 2
I Show that lim S YDy
(@y)—(00) %4 y?
2 2

2. Show that lim does not exist.

(z,9)—(0,0) 2 + 32

3. Evaluate lim (2%® — 2%y% + 3z + 2y).
(zy)—(1,2)

2 2

x
4. Where is the function f(x,y) = 2—y2 continuous?
ety

Remark In general, if D is a subset of R" and f : D — R is a real-valued function defined on
D includes points arbitrarily close to p, then we say that lim f(x) = L if for every number € > 0
T—p

there is a corresponding number § > 0 such that

if 0 <|z—p|l <éthenz e D and |f(z)— L| <e,
< ifz € Bs(p) \ {p} then z € D and |f(z) — L| < e.

If p € D, then we say that f is continuous at p if lim f(x) = f(p), i.e. if for every € > 0 there is

a corresponding ¢ > 0 such that

if |z —p| <0 then z € D and |f(z) — f(p)| <e
<= if x € Bs(p) then z € D and |f(z) — f(p)| < e

Definition Let D be a subset of R? p = (a,b) be an interior point of D and let f: D — R be
a real-valued function defined on D. Then the partial derivative of f with respect to x at (a, b),

denoted by f.(a,b) or gf(a, b), is defined to be
)x

fz(a,b) = lim

h—0

flath, b}i — flab) provided that the limit exists,

0
and the partial derivative of f with respect to y at (a,b), denoted by f,(a,b) or af(a b), is
Y
defined to be

fy(a,b) = lim fla,b+h) = fla,b) provided that the limit exists.

h—0 h

Remark Recall that if f: R — R is differentiable at x = a, then lim M

r—a T —a

exists and f

1s continuous at x = a since

lim[f(x)—f(a)] = lim M . M-hm(x—a) =0 = lim f(z) = f(a).

r—a r—a Tr—a r—a Tr—a r—a r—a
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However, the existence of partial derivatives for a function of several variables do not always
guarantee the continuity of the function.

Example Let f : R? = R be a function of two variables defined by

2xy :
if
f($7y) = .T2—|—y2 (Z’,y) 7é <O7O)7

0 if (z,y) = (0,0).

1. Show that f is not continuous at (0, 0).
2. Find f,(0,0) and f,(0,0).
Remark Let D be an open subset of R? and let f : D — R be a real-valued function defined on

D. Suppose that the partial derivatives f, and f, exist at every point in D, then the functions
fus [y : D — R are defined by

o flathy) - f(zy)
folw,y) = lim Y
)_

. flry+h
fy(Iay) - }7/1{{%) h

differentiate f with respect to x by treating y as a constant,

f(z,y)

differentiate f with respect to y by treating x as a constant.

Examples

L If f(z,y) = 2° + 2%y — 2¢°, find f,(2,1) and f,(2,1).
2. If f(x,y) =4 —2* — 2¢° find f,(1,1) and f,(1,1) and interpret these numbers as slopes.

3. If f(z,y,2) = e™lnz, find f,, f,, and f..

4. 1f f(z,y) = 2° + 2°y® — 2¢%, find the second partial derivatives for = (fu)es foy = (fo)ys
Jye = (fy)ma and fy, = (fy)y-

Clairaut’s Theorem Suppose f is defined on a disk D that contains the point (a,b). If the
functions f,, and f,, are both continuous on D, then

foy(a,0) = fya(a, ).
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Examples

1. Let f:R?* = R be a function of two variables defined by

W =Y) it (4y) £ (0,0)

flay) =9 22+
0 if (z,y) = (0,0).
Show that
oy + dz2y® — o
if (x,y) # (0,0) by direct differentiation,
Lap={ @iy @070
0 if (x,y) = (0,0) by definition of partial derivative,
4 2.3, .5
-yt —4yrC + a0 : : L
if (x,y) # (0,0) by direct differentiation,
faw) =3 PP 0 7 0.0

0 if (z,y) =(0,0) by definition of partial derivative,
and that f,,(0,0) = —1 # 1 = f,,(0,0) by definition of partial derivatives.

2. Show that the function u(z,y) = e®siny is a solution of the Laplace equation, that is
AU = Uyy + Uy, = 0.

Definition Let D C R?, (a,b) be an interior point of D and let f : D — R be a function defined
on D. Then f is called differentiable at (a,b) if there exists (¢1,f;) € R? such that

|[f(z,y) = f(a,b) = ta(z — a) — (y — D)

lim =0.
(2.9)—(ab) |(2,y) — (a,b)]
. ez, y)| — 0. where (2.0 — flaa) — Flab) — bu(t — a) — foly —
— lim =0, where e(x,y) = f(z,y) — f(a,b) — l1(x — a) — ly(y — b)

@p)~ab) \/(z — a)2 + (y — b)2

Theorem If f is differentiable at (a,b), then the partial derivatives f, and f, exist at (a,b) and
(€1> 62) = (fw(av b)’ fy(CL, b))

Proof Since

|f(2,b) — fla,b) — ts(x — a) — (b —b)| f(z,0) = fla,b) = bi(x — a)|

:lim’

0= lim

(2,b)—(a,b) |(z,b0) — (a,b)] z—a |z — al

— 0=lim f(x7b> —f(a,b) —€1<J]—a) — lim f(l’,b) _f(a’vb) _El :fx(a,b) —61,
rT—a Tr—a T—a T —aQ

and
0= qm ey = flab) —bla—a) =Ly —b)] . |flay) = flab) — l(y —b)|

(a:y)—(a.b) |(a,y) — (a,b)] y—b ly — 0|

— 0= lim f(avy) _f(a’7b> _€2<y_b) — lim f(a7y> _f<avb> —62 _ fy(a,b) —gg.
y—b Yy — b y—b Yy — b

Theorem If the partial derivatives f, and f, exist near (a,b) and are continuous at (a,b), then
f is differentiable at (a,b), that is,

i @) = fla,0) — fa(a, b)(z — a) = f,(a,b)(y — D)
(2.9)—(ab) [(z,y) — (a,b)]

= 0.
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Proof For each ¢ > 0, since f, and f, exist near (a,b) and are continuous at p = (a,b), there
exists a § > 0 such that if (z,y) € Bs(p), then

|folz,y) = fola, D) + | fy(z,y) = fy(a,b)] <e.
Let g : Bs(p) — R be defined by
9(x,y) = f(z,y) = f(a,b) = fala,b)(x — a) = f,(a,b)(y —b) for (z,y) € Bs(p).
Then g(a,b) = 0,
92(2,y) = fo(,y) = fala,b) and  gy(x,y) = fo(z,y) — fy(a,b).
Let the line segment in Bj(p) from (z,y) to p = (a,b) be given by
r(t) = (a,b) + t(x —a,y —b), t €[0,1],
and consider the function
g(r(t)) = g(z(t),y(t)) = gla+t(x — a),b+t(y = b)) forte0,1].

By the Mean Value Theorem, there is a 0 < ¢ty < 1 with r(ty) = (20, y0), such that

2 (et (1= O = [ (1), (1)

|92 (0, y0) 2 (to) + gy(w0, o)y (to)]
|[f2(x0, y0) — fala, b))z — a) + [fy(x0, y0) — fy(a,b)](y — D)]

l9(r(1)) — g(r(0))|

< (Ifa@0,90) = fula,b) + | fy(x0, %o) — fy(a,b)]) v/ (z — a)? + (y — b)?
< e/(x—a)?+ (y—b)? = el(z,y) — (a,b)|
Since
9(r(1)) = g(z,y) = f(z,y) — f(a,b) = fula,b)(x — a) — fy(a,b)(y —b), g(r(0)) = g(a,b) =0,
we have

[f(2,y) = fla,b) = fala, b)(x — a) — fy(a,b)(y — b)| = [g(r(1)) — g(r(0))] < el|(z,y) — (a,b)],
which implies that

|f(T>y) B f(avb) — fx(avb)(m — CL) B fy(avb)(y — b)|
|(z,y) — (a,b)]

Since € > 0 is an arbitrary positive number, we have

i @ Y) — fab) — fala, b)(z —a) — fy(a,b)(y — b)|
(@)~ (a.b) [(z,y) — (a,b)]

< €.

=0

and f is differentiable at (a,b).
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Equation of a Tangent Plane Let D C R* and f : D — R be a function with continuous
partial derivatives. Then the plane tangent to the surface

S={(x,y,2) € R3 | z = f(z,y) and (z,y) € D},
at the point P(z,yo, 20) € S has an equation

2 — 20 = fo(x0,y0) (x — z0) + fy(20,%0) (Y — yo)-

Proof Let (' and (5 be the curves obtained by intersecting the vertical planes y = yo and = = z
with the surface S. Then the point P lies on both C; and Cs. Let T and 75 be the tangent lines
to the curves C and Cy at the point P.

Then the plane tangent to the surface S at the point P is defined to be the plane that contains
both tangent lines 7T} and T5.

-

T. @

/ I

Since C; = SN {(z,90,2) | (v,2) € R*} and Cy = SN {(w0,y,2) | (y,2) € R*} are curves in S,

we may parametrize C; and Cs by vector function
Cl : 7”1(1]) - (x7y07z) Cl:CS (%?Joyf(x,yo)) for (xuy()) €D = T,1<x0) - (1707 fﬂf(‘r(byo)) // Tl
CQ : 7"2(3/) = (SUan’Z) 02:CS (15072/7 f(x()’y)) fOI' (Io,y) € D = T;(Z/O) = (07 17fy(x073/0)) // T2

This implies that the tangent plane to the surface S at the point P is perpendicular the vector

(1,O7f;p(l’0,yo)) X <07 17fy(5€0,y0)) = (_fx(anyO)v _fy(x(];yo)? 1)7

and has an equation

) T
(T —T0,¥ — Yo,2 — 20) - (= fe(T0,Y0), — fy (%0, 90),1)) = 0 since cos 5 = 0
= —fo(zo,y0) (* — 20) — fy(T0,Y0) (¥ — ¥0) + (2 — 20) =0
=  2—20= falz0,%0) ( — 70) + fy(z0,%0) (¥ — Yo)-
Example Find an equation for the plane tangent to the elliptic paraboloid z = 22% + 3 at the
point (1,1, 3).

Definition Let D C R?, (a,b) be an interior point of D and let f : D — R be a function with
continuous partial derivatives. The linear function L : R? — R defined by

L(z,y) = f(a,b) + fu(a,b) (x — a) + f,(a,b) (y — b) for all (z,y) € R?
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is called the linearization of f at (a,b) and the approximation

f(xay) ~ f(av b) + fx<a?b> (QJ - CL) + fy(av b) (y - b)

is called the linear approximation or the tangent plane approximation of f at (a,b).

Example Let f : R? = R be a function of two variables defined by

d if (z, 0,0),
foy =T TN #00
0 if (z,y) = (0,0).

Note that f,(0,0) = 0 and f,(0,0) = 0, but f, and f, are not continuous at (0,0), and the
surface z = f(z,y) does not have a tangent plane at (0,0).

Example Show that f(z,y) = xe™ is differentiable at (1,0) and find its linearization there.
Then use it to approximate f(1.1,—0.1).

Definition Let D be an open subset of R? and let f : D — R be a differentiable function defined
on D. The differential df is defined by

(a+Ax,b+ Ay, fla+ Ax,b+ Ay))
VA surface z = f(x, y) '3

y=fx)

/?‘_A\ {a. b, f(a. b)) T~

o dy
/
X

_+_A:

dz

fla, b)

\ | I _
\ | | fla. b)

\ -
0 \ a a+ Ax X
tangent line (@.b,0)  Ay=dy

(a+Ax.b+ Ay 0)

. .y tangent plane
y=fla)+ flla)x—a) 2= fa,b) = £.(a, byt — a) + (@, by — b)

Note that the differentials

e dy = f'(x)dx = the change in height of the tangent line,
o dz = f,(z,y)dx + f,(z,y)dy = the change in height of the tangent plane,

whereas the increments

e Ay = f(x + Az) — f(x) = the change in height of the curve y = f(x),

Page 9



Calculus Study Guide 12 (Continued)

e Az = f(x+ Az,y+ Ay) — f(z,y) = the change in height of the surface z = f(z,y),

and Az — dz = R = the gaps between surface and tangent plane satisfies that

R
lim =0 by Taylor’s Theorem.

(Az,Ay)=(00) \/(Az)2 + (Ay)?

Examples
LIf 2 = f(x,y) = 2> + 3oy — 9/°, find the differential dz = df.
2. If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values of Az and dz.

3. The dimensions of a rectangular box are measured to be 75 cm, 60 cm, and 40 cm, and each
measurement is correct to within € cm.

e Use differentials to estimate the largest possible error when the volume of the box is cal-
culated from these measurements. [Let z, y and z be the dimensions of the box. Since its
volume V' = zyz and the error AV =~ dV = yzdx 4+ xzdy + xydz = 9900¢, the maximum er-
ror in the calculated volume is about 9900 times larger than the error in each measurement
taken.]

e What is the estimated maximum error in the calculated volume if the measured dimensions
are correct to within 0.2 cm. [If the largest error in each measurement is ¢ = 0.2 cm, then
dV =9900(0.2) = 1980, so an error of only 0.2 ¢cm in measuring each dimension could lead
to an error of approximately 1980 cm® (1.1%) in the calculated volume 180, 000 cm?.|

Chain Rule

(a) Suppose that z = f(z,y) is a differentiable function of x and y, where x = ¢(t) and y = h(t)
are both differentiable functions of . Then z is a differentiable function of ¢ and

dz_0fdv  0f dy
dt — Ordt  Oydt

(b) Suppose that z = f(z,y) is a differentiable function of x and y, where x = ¢g(s,t) and
y = h(s,t) are both differentiable functions of s and ¢. Then

8z_8f8x+8f8y and 82_8f8x df dy
ds Oxds OyO0s ot Oz ot 8y ot

Jz Jz

dx dy

0. Jax J Jax J Jdy ()\
Js ot s ot
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(¢) In general, if u is a differentiable function of n variables xq,xs,...,2, and each z; is a
differentiable function of the m variables t1,ts,...,t,,. The u is a function of t1,%s,...,t,, and
for each e =1,2,...,m, we have

ou ou 0xy ou 0xo ou Or, "L Ou Ox;

O On Ot 0wy on 0w, 0t 2 0w, on,
Examples

d
1. If z = 2%y + 3axy*, where x = sin 2t and y = cost, find d_j when t = 0.
0z

0
2. If 2 = ¢"siny, where x = st* and y = s, find %= and &,
0s ot
3. If F is differentiable on a disk containing (a,b), then the equation F'(z,y) = 0 defines y
implicitly as a differentiable function of = near the point (a,b) and we can apply the Chain

Rule to differentiate both sides of F'(z,y) = 0 with respect to =, and obtain

OF dx OFdy

oFdz  OF dy  OF/0x  OF
Ox dx = Oydr

0= ™ arjay Tay 7Y

e.g. find ¢ if 23 + 93 = 62y.
4. Suppose that z is given implicitly as a function z = f(z,y) by an equation of the form
F(z,y,2z) =0, ie. F(z,y, f(z,y)) =0 for all (z,y) in the domain of f.

If F and f are differentiable, then we can use the Chain Rule to differentiate the equation
F(z,y,z) = 0 with respect to z and y, and obtain

OF0r [ OFdy | OF0: _ oo 02 OFJ0r L OF
Or dxr Oy dx 0z 0xr  oxjoa=1 Ox  OF/0z 0z ’
OF 0x OF 0y OF 0z dz/oy=0 0z OF /oy .. OF

oo, orgy  OT0E g9z _ £ 25 2.
ox dy + dy Jy + 0z Jy aym:yﬂ dy 0F/0z i 70

Directional Derivatives and the Gradient Vector

Definition Let D be a subset of R?, (x9,%,) be an interior point of D, and let f: D — R be a
function on D. Then the directional derivative of f at (xg,%o) in the direction of a unit vector
u=(a,b)is

Dy f(x0,10) = lim f(xo + ha, yo + hb) — f(xo,yo)

if this limit exists.
h—0 h

Remarks
(a) If u=1=(1,0), then D;f = f, and if u = j = (0,1), then D;f = f,.

(b) If f is a differentiable function of = and y, then f has a directional derivative in the direction
of any unit vector u = (a,b) and

Duf($’y> = fx(xay)a + fy(l',y)b: (fx(x>y)a fy(l',y)) : (avb) = Vf(m,y) : (av b)>

where Vf(z.y) = (f.(z,y), f,(x,y)) is called the gradient (vector) of f, or grad f, at (x,y).
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Furthermore, since u = (a,b) is a unit vector, there exists an angle # measured from the positive
x-axis to u in the counterclockwise direction such that u = (cos 6, sin6). Then

D, f(x,y) =V f(x,y) - (cosh,sinf) is a function of =, y and 6.

Theorem Suppose f is a differentiable function of two or three variables. The maximum value
of the directional derivative D, f(p) is |V f(p)| and it occurs when w has the same direction as
the gradient vector V f(p).

Examples

1. Let f(z,y) = sinz + ", (z,y) € R Find Vf(1,0) and find points (z,y) such that
Vf(z,y) = (0,0).

2. Let f(z,y,2) = xsinyz, (z,y,2) € R3. (a) Find the gradient of f and () find the directional
derivative of f at (1,3,0) in the direction of v =i+ 2j —k = (1,2, —1).

3. Let f(x,y) = xe¥, (z,y) € R% (a) Find the rate of change of f at the point p = (2,0) in
the direction from p to ¢ = (1/2,2), and (b) determine the direction in which f has the
maximum rate of change and (c¢) find the maximum rate of change of f at p.

Tangent Planes to Level Surfaces

Suppose that
o S={(r,y,2) €ER®| F(x,y,z) = k} is a level surface of F in R3,

e p = (Zo, Y0, 20) is a point in S,

e C' C S is any differentiable curve in S passing through p, and parametrized by r(t) =
(x(t),y(t),2(t), t € I = (a,b), with r(ty) = p for some ¢y € I.

Since C' = {r(t) |t € I} C S, and by the Chain Rule, we have

F(z(t),y(t),2(t) =k = %F(z(t),y(t),z(t)) =0 foralltel
OF dx OF dy 8Fdz_8F8F8F dr dy dz, rn
%%+8_ya+§%_(8x’ay’ax) (dt,dt,dt)—VF(r(t)) r'(t)=0 foralltel.

VF (X0, Yos Z0)

tangent plane

In particular, we have

VF('IOa Yo, ZO) : T/(to) = 07
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which implies that if VF(zo,v0,20) # (0,0,0), VF(x0, 4o, 20) is perpendicular to the tangent
vector 7/(ty) to any curve C' in S passing through p = r(to) = (%o, Yo, 20), and the tangent plane
to the level surface F'(z,y,2) = k at p = (zo, Yo, 20) has an equation

Fy(x0, Y0, 20)(x — z0) + Fy(z0, Yo, 20)(y — Yo) + F=(z0, Yo, 20)(z — 20) = 0.

Example Find the equations of the tangent plane and normal line to ellipsoid

2 2

% + y2 + % =3 at the point (—2,1,-3).

Properties of the Gradient Vector Let f be a differentiable function of two or three variables
and suppose that V f(p) # 0 (zero vector in R? or R?). Then

e The directional derivative of f at p in the direction of a unit vector u is given by D, f(p) =
Vfp) - u.

e Vf(p) points in the direction of maximum rate of increase of f at p, and that maximum
rate of change is |V f(p)].

e Vf(p) is perpendicular to the level curve or level surface of f through p.

curve of
steepest
ascent 100

Examples The figure on the right shows level sets of a height function or f(z,y) = 2* —3* with
a gradient vector fields.

Definition Let f: D C R" — R be a real-valued function defined on D. Then

e f is said to have a local maximum value at p if there exists r > 0 such that B,(p) C D and
f(z) < f(p) forall z € B.(p).
e f is said to have a local minimum value at p if there exists r > 0 such that B,(p) C D and

f(z) > f(p) forall z € B.(p).

Therem (First derivatives Test) If f has a local maximum or minimum at p and if the first
partial derivatives of f exist at p, then Vf(p) = (fu,, fan, -+, fo,)(p) = (0,0,...,0) = 0 € R".

Definition A point p € D is called a critical point (or stationary point) of f if either V f(p) =
0 € R" or if Vf(p) does not exist.
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Example Let f(z,y) = 22+ — 22 — 6y + 14, (z,y) € R?. Find the critical points and extreme
values (or critical values) of f if exist.

Classification of Extreme Values Theorem (Second Derivatives Test) Let f : D C
R? — R be a function defined on D, p be an interior point of D and let B,(p) C D be an open
disk in D. Suppose that the second partial derivatives of f are continuous on B,.(p), Vf(p) =

(f(p), fy(p)) = (0,0) and that

fee(P) fay(p

D — f:l::!f(p)f?/y(p) B [f'/l"y(p)}Q - fyx(p) fyy(pi‘ .

(a) If D >0 and f,.(p) > 0, then f(p) is a local minimum.

(b) If D > 0 and f,.(p) <0, then f(p) is a local maximum.

(c) If D <0, then (p, f(p)) is a saddle point of the graph of f.
)

(d) If D =0, the test is inconclusive: f could have a local maximum or local minimum at p or
(p, f(p)) could be a saddle point of the graph of f.

Outline of the Proof Let u = (h,k) be a unit vector. For any |t| < r, since f(p + tu) has
continuous second derivative for each ¢ € (—r,7) and since

S+ o = [+ 1)+ fy(p+ b lio = Lp)h -+ £, (0)k = T S(2) - (0, ) =0,

and
2

et ACRDI % [fo(p 4 tw)h + f,(p + tu)k][i=o
— [fw (p + tu)h? + fay(p + tw)hk + fye(p + tw)kh + f,(p + tu)kﬂ =0

_ 2 2 _ fay(P) ’ K’ 2
oD+ 2o (D) oy (D = Fua(D) (h+ fm(p)k> b () )~ F0))

so by the Taylor’s Theorem and for each |¢t| < r and for any unit vector u = (h, k) € R?, we have

d 1 d?
fp+tu) = f(p) = (%f(p—f— tu)|t=0> t+ (5@ (p+ tu)h:o) t* + R(t)
facy(p) ? kz 2 t2
= fmmp(h_'_ k) + ——=([ex(p) fyu(pP) — [1,(D -+ R(t),
[ DI Faw®) o Vel = L) | 5 RO
. R(t) : o :
where 111% = 0. Hence, the theorem follows by using the second derivative test for functions
—
of one variable.
Remark Setting a = f,.(p), b = fuy(p), ¢ = fyy(p), note that
e if a # 0 and ac — b? > 0, then
2 2 2
az® + 2bxy + cy2 = a (mz + —bxy + b—2y2) + (c — b—) y2
a a a
_ a<x+§)2+ac—b22 >0 ifa>0
N ay Y <0 ifa<0
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e if a # 0 and ac — b* < 0, then

2
az® + 2bxy + cy? = a(x—l——y) —
a

bi\/b2—acy_o

and (0,0, 0) is a saddle point of the graph of z = ax*+2bzy-+cy? since x+
a

are distinct lines dividing xy-plane into 4 regions around (0, 0).
e ifa=0and ac—b* <0 = b #0, then ax® + 2bxy + cy® = by (2x + cy) and (0,0,0) is a
saddle point of the graph of z = ax? + 2bxy + cy?® since y = 0 and 2z + cy = 0 are distinct.
Definitions Let D be a subset of R" and let f : D C R" — R be a function defined on D. Then

e D is called a bounded subset of R™ if there exists a rectangular box R = [ay, b1] X [ag, ba] X
e X an, by] = {(z1,29,...,2,) € R" | a; < x; < b, 1 < i < n} such that D C R, or if
there exists 7 > 0 such that D C B,(0), where 0 € R".

e D is called an open subset of R" if for each p € D there exists r > 0 such that B,(p) C D,
i.e. every point in D is an interior point of D.

e D is called a closed subset of R™ if its complement D¢ = {x € R" | « ¢ D} is an open
subset of R".

e f(p) is called the absolute maximum (value) of f on D if f(z) < f(p) for all z € D;
f(p) is called the absolute minimum (value) of f on D if f(x) > f(p) for all x € D.

Theorem (Extreme Value Theorem) If f: D C R" — R is continuous on a closed, bounded
set D in R", then there exist p, ¢ € D such that

fp) = f(z) = flg) forallz € D <= max f(z) = f(p) and min f(z) = f(q).

zeD xeD

Remark If f has extreme values at p, ¢ € D C R?, since p (or q) is either a critical point of f
or a boundary point D, we shall find the absolute maximum and minimum of f on D as follows.
1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.
3. The largest of the values from steps 1 and 2 is the absolute maximum value; the smallest

of these values is the absolute minimum value.

Example Find the absolute maximum and minimum of f(z,y) = 2> — 22y + 2y on the rectangle
D={(x,y) | 0<2<3,0<y <2}

Method of Lagrange Multipliers

Let f: R® — R be a differentiable function defined on R? and let S = {(=,y,2) | g(z,v, 2) = k}
be a (level) surface defined by ¢g(z,y, z) = k. Suppose that

e Vg # 0 (vector) on the surface g(z,y, z) =k,
e there is a point p = (xg, yo, 20) € S such that

either f(p) = max{f(z,y,2) | g(x,y,2) = k} or f(p) = min{f(z,y,2) | g(z,y,2) = k}.
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Let C' be a smooth curve passing through p on S given by the vector equation
C: r(t)=(x(t),yt),2(t), t € I =(a,b) and r(tg) = p for some ty € I.

Since f(r(t)) has an extreme value at an interior point t = ¢y and g(z(t), y(t), z(t)) = k for all
t € I, we have

0 :%f(ff(t% y(t), 2(E)le=to = V f(p) - 7' (t0),
0 _%k— %g( (), 9(1), 2(t)li=to = Vg (p) - ' (t0),
= V/f(p) Lr'(t), Vg(p) L r'(ty) for each r'(ty) # 0 € T, (1)S
(

= V£(p), Vg(p) L T,S CR* and Vf(p) // Va(p).

This suggests that we can use the following procedures (Method of Lagrange Multipliers) to find
the extreme values of f(x,y, z) subject to the constraint g(x,y, z) = k.

Step 1. Find all values of z,y, z and A\ such that

Vf(z,y,z) = AVg(z,y,2) (3 equations of z, y, z, A),
g(r,y,2) =k (an equation of z, y, z).

Step 2. Evaluate f at all the points (z,y, z) that result from Step 1. The largest of these values
is the maximum value of f and the smallest is the minimum value of f.

Example A rectangular box without a lid is to be made from 12m? of cardboard. Find the
maximum volume of such a box (with z, y, z being the length, width and height, respectively).

Solution To maximize V = xyz subject to A = xy+2x2+42yz = 12, we find all possible z, y, z, A
such that

(V;Ev V;/a ‘/z) - )\(A$7Ay7142), A=12

—  yz 0 My +22), xz @ Mz +22), zy & A2z + 2y), xy + 2xz 4 2yz W19

xg)gg 2Nz —y)z =0, xz @ Mz +22), My —22)z =0, zy+ 2z +2yz = 12
= r=y=2z a:z(i))\(x+2z), xy + 2xz 4+ 2yz = 12
— 222()4)\2 Yy + 222 4+ 2yz = 12
— z:2)\,x:y:2z:4/\, xy + 222 + 2yz = 48)\% = 12

1
Thus we have A\ = 3 T=Y= 2, z =1, and the maximum volume V =V (2,2,1) = 4.
Suppose now that we want to find the maximum and minimum values of a function f(z,y, z)
subject to two constraints (side conditions) of the form g(x,y, z) = k and h(x,y, z) =

Following the method of Lagrange multiplier, we need to find all values of x,y, z, A and u such
that
Vi(x,y,z) =AVg(r,y,2)+ uVh(z,y,z),

9(z,y,2) =k,
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Geometrically, this means that we are looking for the extreme values of f when (x,y,2) is
restricted to lie on the curve of intersection C' of the level surfaces g(x,y, 2) = k and h(z,y, 2) =

Example Find the maximum value of the function f(z,y,z) = = + 2y + 3z on the curve of
intersection of the plane z — y + z = 1 and the cylinder 2% + y? = 1.

Solution To maximize f(z,y,2) = x + 2y + 3z subject to g(x,y,2) = v —y + 2z = 1 and
h(z,y,2) = 2> +y* = 1, we find all possible x,y, z, A, p such that

(fxa fy7fz) - )‘(gamgy)gz) + ,u(hxa hy7Zz)a

g=1,
h=1

(fmafya fZ) = A(gxagyagz) + M(hma hy; Zz)7

<= g=1,
| h=1
[ (1,2,3) = A1, =1, 1) + p(2, 2y, 0)= (A + 22, =\ + 21y, ),
— § TrT—y+tz=1,
([ A=3 19342z, 22 342,
— r—y+z=1,
\ 172+y2:1
z(2)— 2
Ry AzS,x@—gy,x—yﬁLz@l, m2+y2(i—)1
(3)=(5) 5 3 _ 2 (4)
= A=3y=t——, c=F—=, z—y+z=1
(4) 5 (3) 2 (4) 7
— )\:3, = —_—, T = —_—, 2= N
Y V29 q:\/29 29
2 5) 5) 7
Hence f(——= = 3+ V29 and , 11— —,) = 3 —+v29 are
I g+ ) = 3V S == ) = 3

respectlvely the maxmlum and minimum values of f subject to g(z,y,2) =x —y+ 2 =1 and
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